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The effect of perturbations on hot spot ignition is studied using full two-dimensional~2D! numerical
simulations of the National Ignition Facility@J. D. Lindl, Phys. Plasmas2, 3933~1995!# direct drive
Laboratory for Laser Energetics target design and newly derived 2D self-similar solutions for a
perturbed burn wave propagation. It is shown that the required implosion velocity needed for
ignition increases with the perturbation mode number and final amplitude, reaching an asymptotic
value for high enough perturbation mode numbers, when the entire mixing zone no longer
contributes to the ignition of the hot spot. Using the new self-similar solutions, ignition conditions
for various perturbation mode numbers and amplitudes are obtained. These ignition conditions,
which correspond to areal densities higher than needed for ignition in the symmetric case, are
translated to a required increase in the implosion velocity needed for ignition, using the 1D
Levendahl–Lindl scaling, in good agreement with the full 2D numerical simulation results. Finally,
using the above results, a model for predicting the gain of a perturbed targets as a function of the
perturbation spectra~single-mode and multi-mode! is presented, in good agreement with full
numerical simulations. ©2001 American Institute of Physics.@DOI: 10.1063/1.1412009#

I. INTRODUCTION

The ignition of a central hot spot in the deuterium–
tritium ~DT! fuel, which generates a thermonuclear burn
wave that propagates through the rest of the DT fuel, is cru-
cial for achieving high gains in inertial confinement fusion.1

Hot spot ignition and burn propagation are expected to be
demonstrated in the National Ignition Facility~NIF!.1 The
limited energy source of NIF is expected to provide rela-
tively marginal hot spot ignition with relatively small areal
densities.2 The hot spot is thus sensitive to spatial perturba-
tions which grow under the Rayleigh–Taylor instability and
may quench the ignition. This motivates a detailed investiga-
tion of the conditions under which the hot spot ignites and of
the effects of spatial perturbations on these conditions.2

The ignition conditions are often determined using sim-
plified, zero-dimensional~0D!, Widner-type models of the
hot spot.3–9 These models describe the hot spot by few char-
acteristic variables: The radiusR, densityr, and temperature
T. The ignition line ~IL ! is then defined as the line in the
rR2T plane on which the energy loss and gain rates inside
the hot spot are balanced. In a previous work,10 we showed
that a set of self-similar solutions, the existence of which was
first pointed out by Neudachin and Sasorov,11,12 can be used
to provide the ignition criteria while accounting for the radial
critical profiles of the hydrodynamic variables inside the hot
spot. The self-similar solutions exist for an outside density
profile rout that decreases as 1/r and it includes all the rel-

evant physical mechanisms. It was shown that although this
special boundary condition under which the self-similar so-
lutions exist, they provide a natural global ignition condition
that is applicable for more general density profiles.

The main uncertainty in the design of ignition facilities,
such as NIF, results from the effect of perturbations.1 The
literature presents several numerical investigations of the ef-
fect of perturbations on target ignition and gain. Effects of
single mode long wavelength perturbations were studied by
the Rochester group~Verdon13 and McCrory and Verdon14!
and later by Atzeni.15–17 Perturbations with different mode
numbersl and different amplitudesA were investigated by
means of a two-dimensional~2D! numerical simulation. It
was found that the yield of the target decreases as the initial
perturbation amplitudeA increases or as the mode numberl
increases. For a given mode numberl there exists a critical
initial amplitude above which ignition does not occur. The
critical initial amplitude was found to decrease with the
mode numberl of the perturbation.

Haanet al.2 estimated the robustness of the NIF baseline
target design to hydrodynamic instabilities, which result
from the surface roughness. They used direct single mode 2D
calculations at different modes, combined with a saturation
model,18 to estimate the perturbation amplitude at peak com-
pression that results from a given surface roughness. The
effect of the perturbation on ignition was modeled by direct
2D simulations. It was found that spike amplitude of 30%–
50% of the hot spot radius would quench the ignition.

Direct 2D and 3D simulations of the NIF target witha!Electronic mail: schwartz@bgumail.bgu.ac.il
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multimode perturbations were only recently studied.19–22The
perturbed hot spot is seen to consist of a central clean region
of low density D–T, surrounded by a mixing zone, composed
of wide bubbles of the low density D–T floating outside
through the high density spikes. Although the initial pertur-
bation contains many modes, the final perturbation is usually
characterized by a single dominant wavelength, motivating
the single mode approach taken in the current work.

Levedahl and Lindl23 analyzed the effect of a short
wavelength mixing zone surrounding the hot spot on igni-
tion. They derived a scaling law for the increase in the im-
plosion velocity required for ignition as a function of the
thickness of the mixing zone.

In the current work the effect of perturbations on hot
spot ignition is studied using full two-dimensional simula-
tions and new two-dimensional self-similar solutions. The
simulations’ results are presented and discussed in Sec. II. In
Sec. III we compare the results with Levedahl and Lindl’s23

formula. It is shown that their formula describe well the re-
sults of high mode number perturbations, but is not adequate
for describing low modes. Section IV presents a model for
the effect of perturbation on hot spot ignition, which is ad-
equate for a wide region of mode numbers. The model is
based on new 2D self-similar solutions derived as an exten-
sion, proposed by Neudachin and Sasorov,11,12to the 1D self-
similar solutions presented in Ref. 10. Using these 2D self-
similar solutions, an ignition condition for perturbed hot
spots is obtained as a function of the perturbation mode num-
ber and final amplitude. We then combine the 2D self-similar
ignition condition with Levedahl and Lindl’s23 scaling law to
give the increase in the implosion velocity required for igni-
tion. Finally, in Sec. IV, we give an approximate formula for
the yield of a general perturbed target as a function of the
implosion velocity and the perturbation spectrum both for
single mode and for multimode perturbations.

II. TWO-DIMENSIONAL NUMERICAL SIMULATIONS
FOR PERTURBED HOT SPOTS

Since real hot spots, as was discussed in the Introduc-
tion, are usually dominated by a single mode at the time of
ignition, we concentrate on single mode perturbations. We
repeat the single mode calculations found in the
literature13–17and extend them to higher mode numbers. For
high l’s a new behavior is obtained—the initial critical am-
plitude AC no longer decreases withl, but starts to increase.
This new behavior is presented and discussed.

A. Description of the 2D simulations geometry and
the simulation code

Three-dimensional calculations indicate that the multi-
mode 3D perturbation is an array of spikes penetrating the
hot spot, surrounding approximately hexagonal bubbles.2,20

These 3D perturbations can be simulated directly using 3D
numerical codes,24–26or can be approximated by 2D codes in
various geometries. Both the Rochester group13,14 and
Atzeni15–17chose a 2D representation of the perturbations by
spherical harmonic modes withm50 ~Legendre polynomial
modes!. Following Haan,2 we chose the approach of a 2D

Cone approximation, described below, which is more ad-
equate for modeling the 3D structures of bubbles and spikes
that are present in reality. Moreover, the Cone approach al-
lows the computation of relatively high mode numbers with
a still reasonable numerical resolution.

For a given wavelength, two different 3D configurations
exist.20,26 The first configuration describes bubbles that are
surrounded by spikes~bubble-ridge configuration! and the
second configuration describes spikes surrounded by bubbles
~valley-spike configuration!. Haan proposed that these two
3D configurations could be approximated in 2D simulations
within a Cone with reflective boundary conditions.2 The first
configuration is approximated by a single bubble of appro-
priate solid angle surrounded by a spike curtain falling along
the reflective boundary conditions of the Cone.2 The second
configuration is of opposite sign—a spike on the axis of the
Cone surrounded by a circular bubble.2

In the present work we adopt the Cone approximation
approach and focus mainly on the spike-on-axis configura-
tion, which has greater effect on ignition. A comparison be-
tween spike-on-axis and bubble-on-axis configurations is
brought in Sec. IV.

The simulations were performed on profiles close27 to C.
Verdon’s canonical direct drive design of NIF.28–30A veloc-
ity perturbation with a given mode numberl and amplitudeA
was imposed on the 1D profiles of this target, before the time
the Rayleigh–Taylor instability begins~the 1D profiles were
taken from Ref. 31!

v2D~r ,u!5v1D~r !~11A cos~ lu!!.

The simulations were performed in a Cone with an angle of
2p/ l and with reflective boundary conditions. We shall refer
to l as the mode number of the perturbation, although it does
not correspond to a pure Legendre polynomial mode. The
initial perturbation amplitude is denoted byA to distinguish
it from the final perturbation amplitudej of the hot spot at
the time of stagnation.

The simulation code used is the LEEOR-2D code.32,33

The code includes hydrodynamics, electron heat conduction,
fusion, a simple one group diffusion model fora-particle
transport and bremsstrahlung radiation losses. An ideal gas
equation of state was used for the DT fuel.

The code assumes equal ion and electron temperatures
because of their relatively small relaxation time. Fuel deple-
tion is not taken into account, as it is relatively low in NIF
targets due to the lowrR of the shell and, in general, its
main effect is during the burn stage and it barely affects the
ignition stage in which we are interested. Taking into account
all these mechanisms, the resulting gain of the target was
found to be very close to the gain calculated by Verdon29,30

for the same target.27

For the calculations presented here we used ar 2u ge-
ometry mesh. Typically, the mesh consists of 15 cells in the
u direction~15 cells per half wavelength! and 65 cells in the
r direction. The rezoning scheme was set to keep an equal
partitioning in theu axis. In the radial direction the scheme
was set to move the cells of the hot spot shell lagrangianly
while keeping the inner hot spot cells uniformly distributed
between the center of the hot spot and the moving shell.
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B. The time evolution of a perturbed capsule

As a typical example of a simulation of a perturbed hot
spot, we choose the case of mode numberl 56 and initial
velocity amplitudeA52.5%, for which the resulting final
amplitudej[DR/R is 22%. This perturbation is not large
enough to quench the ignition and the development of the
hot spot both before and after ignition can thus be followed
and compared with the development of the unperturbed hot
spot. Figure 1 compares the trajectories in therR2T plane
of the perturbed and unperturbed targets.

In the early implosion stage the hot spot is still
Rayleigh–Taylor stable, the perturbation is small and the tra-
jectories are relatively close. Then, at about the time marked
by ‘‘a’’ in Fig. 1, the Rayleigh–Taylor instability begins, the
perturbation starts to grow and the trajectories diverge from
each other.

The time of ignition, marked by ‘‘b’’ in Fig. 1, is char-
acterized by a sudden increase in the hot spot temperature.
This sudden increase is seen by the distance between the
points along the trajectories, which are marked at time inter-
vals of 25 ps. It is seen that the ignition of the symmetric
case occurs as the 1D self-similar IL10 is crossed. Ignition of
the perturbed hot spot, however, is seen to occur above the
IL. The hot spot at that time is highly perturbed (DR/R
50.22), which increases the energy loss rates from the hot
spot and thus requires a higherrR for ignition. In other
words, the IL’s for perturbed hot spot should be higher than
the IL derived for the symmetric hot spot. After ignition the
trajectories propagate along a working line which is parallel
to the stable right branch of the IL. At this stage, the propa-
gation of the burn smears out the perturbation and thus the
perturbed hot spot propagates along the same working line as
the symmetric hot spot.10

C. The critical initial and final amplitudes

The resulting yields and critical amplitudes of the vari-
ous simulations performed are summarized in Fig. 2~a!. The

figure shows the yield of the target relative to the yield of the
unperturbed target as a function of the initial perturbation
amplitude for different mode numbers. This figure is analo-
gous to the figures shown in Refs. 13–17, except that it is
extended to higher mode numbers. The critical initial ampli-
tude is shown in the inset as a function of the perturbation
mode number.

Our calculations indicate a new behavior in the exten-
sion of the results of Refs. 13–17 to high mode numbers. It
is seen from Fig. 2~a! that at highl’s, the critical amplitude
AC no longer decreases withl, but starts to increase. Thus,
the moderate wave numbers~of l 55 – 12! are the most dan-
gerous ones. The different behavior seen in low and high
mode number is, as explained below, due to the effects of
two different physics: The Rayleigh–Taylor growth of the
modes is the dominant physics that determines the critical
amplitude in high mode numbers and the effect of a given
mode on ignition is the dominant physics in low mode num-
bers.

The effect of the different Rayleigh–Taylor growth fac-
tors of the different modes is eliminated in Fig. 2~b!, which
shows the same data of Fig. 2~a!, but as a function of the

FIG. 1. TherR2T plane ~with rR5*rdr!. Shown are the self-similar
ignition line for a symmetric hot spot and trajectories of a symmetric hot
spot and of a perturbed hot spot with mode numberl 56 and initial ampli-
tude A52.5%. The dots indicateDt of 25 ps. The times of implosion,
ignition, and burn wave propagation are marked by a, b and c, respectively.

FIG. 2. Yield of perturbed hot spots versus the perturbation initial~a! and
final ~b! amplitude for different mode numbers between 2 and 26. Inset: the
critical amplitude versus the perturbation mode number. Figure~b! also
show the yield of the symmetric 1D case in which the implosion velocity is
reduced byDv as a function of the effective perturbation associated with
that reduction@Eq. ~2!#.
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final amplitude of the hot spot defined byj5DR/R0 at the
time of peak compression. This way, only the ignition phys-
ics is left; decreasing the mode number causes a decrease in
the effective area to volume ratio, which allows ignition with
higher amplitudes.

Hence, the increase in the critical initial amplitude with
the mode number seen in Fig. 2~a! in the high mode region is
not a result of a reduced effect of the higher mode on igni-
tion, but is a consequence of the reduced Rayleigh–Taylor
growth factors of the high modes. An increase in the mode
number in this region causes a decrease in the growth factor
due to early saturation of the higher modes.

It is seen in Fig. 2~b! that asl becomes higher than some
specific wave numberl * ~which is approximately 8 in our
case! the critical final amplitudejC does not increase with
increasingl, but converges asymptotically to a certain value.
This asymptotic behavior results from the fact that in the
region of mode numbers higher thanl * the bubbles do not
contribute any more to the fusion process and they no longer
help in the ignition process. In this region only the clean
inner part of the hot spot contributes to ignition and thus the
critical final amplitude no longer depends on the perturbation
mode number. The fact that for high mode numbers only the
clean inner part of the hot spot contributes to ignition was
used by Levedahl and Lindl23 to determine the required in-
crease in the implosion velocity needed to ignite hot spots
with high mode number perturbations, as described in the
next section.

III. THE IMPLOSION VELOCITY REQUIRED FOR
IGNITION OF A PERTURBED HOT SPOT

From the practical point of view, the most important re-
sult of studying the effect of perturbations is to specify the
required increase in the implosion velocity needed for igni-
tion in the presence of a perturbation. For high mode number
perturbations, Levedahl and Lindl23 suggested a simple, but
yet powerful, scaling law that relates the required increase in
the implosion velocity to the amplitude of the perturbations.
Levedahl and Lindl’s idea consists of two main assumptions.
The first is that for perturbations with high mode numbers
@see Fig. 5~a! below#, only the inner clean part of the hot spot
contributes to ignition. The second is that the required in-
crease in the velocity is of the same magnitude that would
have been required if the entire capsule had been rescaled in
size by the ratio,Rclean/R0 , of the clean to unperturbed hot
spot radii. Then, using Livermore scaling lawEign}v25.5

between the driver energy required for ignition and the
achieved target implosion velocity,1 the relation between the
required increase in the implosion velocity and the perturba-
tion amplitude was obtained23

vmix

v0
5S Rclean~j!

R0
D 22/5

5~12j!22/5. ~1!

The resulting increase,vmix /v0 , in the implosion velocity
required for ignition when high mode number perturbations
are present is shown below in Fig. 9~b!. Note that Levermore
scaling law apply to the class of implosions in which the
implosion pressure is kept constant while the implosion ve-

locity or fuel entropy is changed. Other classes of implosions
result different scaling laws34–36 and are not considered in
the current work.

Let us now phrase the relation of Eq.~1! from a some-
what different point of view. Since a perturbation can be
compensated by an increase in the implosion velocity, we
may say that the perturbation is equivalent to a decrease in
the implosion velocity by the same amount. A symmetric hot
spot with implosion velocity reduced byDv would thus be
the equivalent of a perturbed hot spot with an amplitudej
defined by

j512@~v02Dv !/v0#5/2. ~2!

In Fig. 2~b! this formula was used to plot the yield of 1D
simulations of a symmetric hot spot in which the nominal
implosion velocityv0 was reduced by a varied amount,Dv.
As expected, it is seen@Fig. 2~b! inset# that Levedahl and
Lindl’s 1D model represents the asymptote at largel’s of the
ignition threshold of full 2D simulations. Less expected,
however, is the fact that the model describes well not only
the ignition threshold but also the whole gain curve of high
mode number targets. In general, the burn efficiency of a
target depends only on its total*rdr once it has ignited.
Levedahl and Lindl’s model, however, describes the effect of
mix on the implosion velocity required to achieve ignition
and says nothing about burn efficiency or yield. To under-
stand how could the ignition model of Levedahl and Lindl’s
be extended to gain prediction,37 we refer to Fig. 3. The
figure shows, as a function of time, the average temperature
of the hot spot and the total target optical depth (*rdr) for
three variations of the target: An unperturbed target with im-
plosion velocityv0 ~1D!, a perturbed target withl 510, j
522% and the same implosion velocityv0 ~2D!, and a sym-

FIG. 3. The total optical depth of the target~thin lines! and the hot spot
temperature~thick lines! are shown as a function of time for three targets: an
unperturbed target with implosion velocityv0~1D!, a perturbed target with
l 510,j522%, andv0~2D!, and a symmetric target with reduced implosion
velocity v5v0(12j)2/5~1D* !. Inset: The total optical depth at the moments
in which the hot spot temperature reaches 4, 6, and 12 keV versus the target
yield as the perturbation amplitudej is varied~2D! and as the corresponding
implosion velocity in a symmetric target is varied (1D* ).
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metric target with reduced implosion velocityv5v0(1
2j)2/5 (1D* ). The 1D target has a yield of 32 MJ and both
the 2D target and the 1D* target have a yield of about 5 MJ,
which is a demanding point right on the gain cliff. As seen in
the figure, the cause for the reduction in yield is not a result
of a reduction in the maximal optical depth achieved, which
is hardly affected by neither the 2D perturbation nor by the
1D* reduced velocity~the reduced velocity naturally causes
a slight delay in the implosion schedule, but the maximal
optical depth is barely affected!. Looking at the hot spot
temperature, however, it is seen that unlike the 1D target
which ignites in concert with the maximal optical depth, the
2D and the 1D* targets ignite much later when the target
optical depth is considerably lower. This lower optical depth
at the time of ignition is responsible for the reduced yield of
the target. This is also seen in the figure inset which summa-
rize the results of targets with other perturbation amplitudes
j and their corresponding symmetric targets with reduced
velocity. The inset shows the relation between the total yield
of the target and its optical depth taken at times when the hot
spot temperature reaches 4, 6, and 12 keV. Looking at the
optical depth at the time when the hot spot temperature
reaches 12 keV, it is seen that the yield is a function of the
optical depth alone and scales in the same way for the 2D
and for the 1D cases. It is also seen that at slightly earlier
times, when the hot spot temperature is 4–6 keV, the optical
depth of both the 1D and the 2D cases is totally independent
of the target’s yield. The 2D perturbation and the reduced
velocity in the 1D case thus seem to affect the yield by
disturbing and delaying the ignition process allowing more
time for the target to expand and thus reducing the actual
optical depth of the target at the time of ignition. Levedahl
and Lindl’s model indeed describes only the effect of pertur-
bation onignition, but it does it so well that not only it gives
the threshold for ignition, but also the right delay in ignition
for marginal targets. This right delay in ignition is then trans-
lated to the right reduction in the optical depth and thus to
the right yield for the target.

It is apparent, however, from Fig. 2~b! that the Levedahl
and Lindl’s formula does not explain the relatively high final
amplitudes needed to quench the ignition for low mode num-
ber perturbations. In order to explain the difference between
low and high perturbation mode numbers, let us now com-
pare these two limits. Figure 4 compares the temperature
contours and radial profiles at the time of ignition, when the
temperature at the center of the hot spot is 13 keV, for two
different simulations with mode numbers 3 and 16 and with
initial amplitudes chosen as to achieve marginal ignition de-
fined by the same gain (G52). Although the temperature at
the center of the hot spot is the same, the temperature of the
hot spot’s bubbles is much higher in the low mode case than
in the high mode case. This is seen both from the relative
proximity of the 1.5 and 7 keV contours in Fig. 4~a! and
from the temperature along the ‘‘bubble’’ profiles in Fig.
4~b!. This difference in the bubble temperature between low
modes and high modes, which is due to the high tangential
energy losses in the high mode bubbles, allows the low mode
hot spot to ignite with higher perturbation amplitudes at peak
compression~in the example shown, thel 53 hot spot ignites

with an amplitude of about 33% in peak compression relative
to only 22% for thel 516 case!. Indeed, it is seen that while
the tips of the bubbles of the two hot spots reach approxi-
mately the same radius@about 110mm in Fig. 4~a!# and the
same optical depth@about 0.4 g/cm2 in Fig. 4~b!#, the spike
of the l 53 hot spot penetrates much more than in thel
516 case~0.1 g/cm2, 40 mm versus 0.2 g/cm2, 70 mm! and
still both targets ignite in the same way and achieve the same
total yield.

The Levedahl and Lindl argument can be formally ex-
tended to include also the effect of perturbations with low
mode numbers. As we have seen, for low mode numbers the
bubbles still contribute to the ignition of the hot spot. Hence,
the perturbed hot spot should be equivalent to an unperturbed
symmetric hot spot with an effective radius,Reff , that is
lower than the unperturbed radiusR0 , but higher than the
inner clean radiusRclean @see Fig. 5~b!#. Given the effective
radius, Reff(l,j), as a function of the perturbation’s mode
number and amplitude the increase in the velocity required
for ignition is given using the same formula that Levedahl
and Lindl used, except that nowRclean(j) should be replaced
with Reff(l,j)

vmix

v0
5S Reff~ l ,j!

R0
D 22/5

5R̂eff~ l ,j!22/5. ~3!

The main difficulty in using Eq.~3! for determining the re-
quired increase in the implosion velocity is to obtain the

FIG. 4. Comparison between low mode (l 53) and high mode (l 516)
perturbations with different initial amplitudes chosen to get the same gain
(G52). Shown at the time of ignition are the temperature contours~a! and
the temperature profiles as a function of*rdr along the Cone surface~thick
lines!, where the bubbles are located, and along its axis~thin lines!, where
the spikes are located~b!.

FIG. 5. Schematic illustration of a hot spot with a high~a! and low~b! mode
number perturbation.
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normalized effective radiusR̂eff(l,j) and its dependence on
the perturbation mode number and amplitude.

For high mode numbers the Levedahl and Lindl formula

should be reproduced and we thus expectR̂eff(l,j) ——→
l→`

1
2j, which means that only the clean inner part of the hot
spot contributes to ignition. For low mode numbers the
bubble still contributes to ignition and we should expect
R̂eff(l,j) to be somewhere between the spike tips, 12j, and
the bubble tips, 11j. In the next section we shall see that
new 2D self-similar solutions can be used to obtain the ef-
fective radius.

IV. IGNITION CRITERIA USING TWO-DIMENSIONAL
SELF-SIMILAR SOLUTIONS

As was shown in Sec. II, the hot spot’s thermodynamic
properties are hardly affected by perturbations in the implo-
sion stage and their main influence is during the approach to
ignition stage. In this section the ignition conditions for per-
turbed hot spots are derived using new 2D self-similar solu-
tions. The derived ignition criteria will then be used to define
the required increase in the implosion velocity needed for
ignition and the yield of a perturbed target.

A. The two-dimensional self-similar solutions

In Ref. 10 it was shown that self-similar solutions for the
propagation of the hot spot, which include all the relevant
physical mechanisms, exist for an outside density profile
rout5s/r . The set of 1D self-similar solutions with different
values of the parameters was mapped into therR2T plane
to obtain the IL for symmetric hot spots. We shall now see
that the same procedure can be applied for perturbed hot
spots, namely deriving 2D self-similar solutions and use
these solutions to obtain the ignition criteria for perturbed
hot spots.38

The 1D self-similar solutions can be extended to include
spatial perturbations by imposing a modulation on the out-
side density profile of the form

rout~r ,u!5
s

r
~11e cosu l !. ~4!

This way, no new dimensional parameters are introduced and
the solution should, therefore, remain self-similar.

In the 1D case, the separation of variables reduced the
partial differential equations to ordinary differential equa-
tions in the variablez5r /R(t). These equations could be
solved by a simple numerical integration. In the 2D case,
however, the equations cannot be reduced to ordinary differ-
ential equations. After reducing the time variable from the
2D equations, a set of partial differential equations with two
variablesz and u is obtained. Hence, the 2D self-similar
solutions could not be obtained by means of a simple nu-
merical integration. Instead, we obtained the solutions using
2D simulation in which an initial hot spot is ignited at the
center of a density profile of the form of Eq.~4!. The solution
was found to converge to the asymptotic self-similar solution
after the burn wave propagates a few initial hot spot radii.

This approach is analogous to Neudachin and Sasorov’s ap-
proach for the 1D solutions11,12 and it allows only the stable
solutions to be obtained.

An example of a 2D self-similar solution for a perturbed
hot spot withrR50.6 g/cm2,39 l 56 ande50.9 is given in
Fig. 6. Figure 6~a! shows the temperature and density con-
tours of the hot spot and the surrounding cold fuel at two
different times. Figure 6~b! shows the radial profiles of the
temperature and density on the Cone surface~bubble! and
along the Cone axis~spike!. It is seen that the whole 2D
maps of the temperature and the density are similar to them-
selves up to changes of scale. As in the 1D case, the scale of
the temperature does not change with time, while the density
scale decreases as 1/t ~or 1/R, since R}t!. To emphasize

FIG. 6. A typical 2D self-similar solution at two different times.~a! Tem-
perature and density contours.~b! Radial profiles of the temperature and
density~multiplied by the hot spot radius! along the Cone axis~t1,a and t2,a!
and along the Cone surface~t1,c and t2,c!.
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these scalings, the density profiles in Fig. 6~b! were multi-
plied by the hot spot radius and the color scales in Fig. 6~a!
were drawn according to the scaling of the corresponding
variables~the temperature scale is 0–50 keV for both values
of t, while the density scale is 0–60 g/cm3 for t5120 ps and
0–35 g/cm3 for t5200 ps according to the 1/t dependence!.

The solution shown in Fig. 6 is only an example; there is
actually a three parameter family of self-similar solutions
determined by the boundary condition parameters: The opti-
cal depth parameters, the perturbation mode numberl and
the perturbation amplitudee.

The solutions withe.0 describe spike-on-axis perturba-
tions ~see the temperature contours in Fig. 6! and those with
e,0 describe bubble-on-axis perturbations. We shall now
present the spike-on-axis solutions in more details. For
bubble-on-axis perturbation, concluding results are shown
and a comparison with the spike-on-axis solutions is made.
In general the bubble-on-axis results are similar to the spike-
on-axis results except for the case ofl 52, which will be
considered separately. Figure 7 shows the temperature pro-
files of four self-similar solutions with the same effectiverR
and different amplitudes,e, and mode numbers,l, of the
outside density modulation. For each 2D self-similar solu-
tion, the perturbation amplitudej5DR/R,40 which is a time
independent parameter characterizing each solution, is indi-
cated in the figure. The amplitudej is a monotonic function
of the amplitudee. However, even whene approaches 100%,
the obtained amplitudej of the resulting hot spots is
bounded~j524% fore599% andl 56 in the case shown in

Fig. 7!. The physical cause of this limit ofj is the tangential
energy transport mechanisms, which tend to heat and reduce
the cold spikes penetrating the hot spot. We should expect
these tangential conduction mechanisms to decrease as the
wavelength of the perturbation is increased and thus larger
perturbation amplitudesj should be obtained for smaller per-
turbation mode numbers. This can be seen when comparing
l 54 andl 56 with e570%, which resultj514% and 12%,
respectively.

For small modulation amplitudes the 2D self-similar so-
lution is similar to its corresponding 1D self-similar solution.
However, the interesting solutions, from the point of view of
the ignition conditions, are those with relatively high pertur-
bation amplitudes. In these solutions the tangential mecha-
nisms become important for the ignition process~see also
Fig. 4! and the propagation of the thermonuclear burn wave
is possible due to these tangential mechanisms. Without tan-
gential interaction, the 2D solution would be composed of a
series of 1D solutions, such that the profiles along any direc-
tion, u, are the profiles of the 1D self-similar solution that
corresponds to the boundary condition parameters1D5s(1
1e cosul). For the high modulation amplitudes shown in
Fig. 7 and foru close to the Cone surface,s1D is actually
lower than the critical valuescr , defined in Ref. 10 as
the value ofs below which there are no 1D self-similar
solutions. The propagation of a thermonuclear burn wave
along theseu’s is thus possible only due to the tangential
mechanisms.

B. Ignition criteria for perturbed hot spots using the
2D self-similar solution

For each mode number,l, and hot spot amplitude,j, a set
of 2D self-similar solutions exist for different values of the
parameters.41 Each of these sets can be mapped into the
rR2T plane to produce the IL for a hot spot with the given
perturbation mode number and amplitude. The mapping is
done using the following definitions:

T̄5
1

M E
V
rTdV,

rR5
1

12cos~p/ l ! E0

p/ l 3

2
s~11e coslu!sinudu, ~5!

which are the natural extensions of the definitions used for
the symmetric case, in Ref. 10.

The resulting IL’s are shown in Fig. 8 together with the
IL of the unperturbed hot spot. It is seen that the IL’s of the
perturbed hot spots are higher than the IL of the symmetric
hot spot~except for thel 52 case with relatively low ampli-
tudes, which will be discussed below!. The lines get higher
as the perturbation amplitude is increased and as the mode
number is increased. A higher IL means that larger hot spots,
with higherrR, must be produced in order to achieve igni-
tion in the presence of perturbations. This is in agreement
with the results of the simulations presented in Fig. 1, where
it was shown that perturbed hot spots ignite at higherrR
than the unperturbed hot spot. A complete comparison with
the simulation results is brought in the next subsection.

FIG. 7. Temperature contours of spike-on-axis 2D self-similar solutions for
different perturbation mode numbers and amplitudes.
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C. The required increase in the implosion velocity
needed for ignition

The higherrR needed to ignite a perturbed hot spot can
be related to a higher implosion velocity needed for ignition.
In Eq. ~3!, the increase in the required implosion velocity
was defined in terms of the effective radius of the hot spot.
The idea is that the effective radius as a function of the
perturbation’s mode number and amplitude can be reduced
from the 2D self-similar IL’s presented in Fig. 8. Using these
IL’s, the ratio of the effective to the unperturbed radius is
defined by

Reff~ l ,j!

R0
5

~rR!min
1D

~rR!min
l ,j ,

where (rR)min
1D is defined as the minimalrR along the 1D

self-similar IL and (rR)min
l,j is defined as the minimalrR

along the 2D self-similar IL of a perturbed hot spot with the
given perturbation mode numberl and amplitudej. The ob-
tained effective radius is shown in Fig. 9~a!. It is seen that,
except for thel 52 case, the effective radius is lower than the
unperturbed radius and it is decreases with the perturbation
amplitude and with the perturbation mode number. As ex-
pected, the effective radius is always higher than the clean
radius of the spike tips and converges to it asl→`.

The effective radius of the self-similar solutions was in-
troduced into Eq.~3! to obtain the required increase in the
implosion velocity needed for ignition. The resulting implo-
sion velocity is shown in Fig. 9~b! as a function of the per-
turbation amplitude at peak compression for different mode
numbers. Thel 5` line corresponds to the results of
Levedahl and Lindl. It is seen that the lines of the high mode
numbers~l 56 and 12! are relatively close to thel 5` line
and coverage to it as the perturbation amplitude is increased.
This convergence is seen to occur forj@1/l as the aspect
ratio of the bubbles becomes high enough so that the bubbles
no longer contribute to ignition. For low mode numbers~the
l ,4 lines! the bubbles do contribute to ignition and the re-
quired velocity is thus lower than the results of Levedahl and
Lindl. For the mode numbersl .2, it is seen in Fig. 9 that the
bubble-on-axis (e,0) results are similar in nature to the

spike-on-axis (e.0) results. For the bubble-on-axis configu-
ration, a slightly lower implosion velocity is needed than for
the spike-on-axis configuration.

For the mode numberl 52, an apparent anomalous be-
havior is obtained. According to the self-similar solutions, up
to amplitudes of about 30% the required implosion velocity
needed for ignition issmaller than that needed for the sym-
metric case. In other words, anl 52 perturbation with a low
amplitude may actually help the ignition of the hot spot.

This apparent anomalous behavior, predicted by the 2D
self-similar solutions, is verified in Fig. 10 by means of di-
rect 2D simulations. The figure shows the yield of a target
with an implosion velocity slightly above the critical velocity
needed for ignition, versus the perturbation amplitude at
peak compression for amplitudes with mode numberl 52.
Indeed, in agreement with the prediction of the self-similar
solutions, small perturbation amplitudes are seen to increase
the yield of the target. However, at first sight, it seems that

FIG. 8. The ignition lines in therR2T plane for perturbed spike-on-axis
hot spots compared to the ignition line for symmetric hot spot. The ignition
lines for the perturbed cases were obtained only for the stable right branch
and were extrapolated to the unstable left branch keeping a constant distance
from the 1D ignition line.

FIG. 9. The normalized effective radius~a! and the corresponding increase
in the implosion velocity required for ignition~b! for perturbed hot spots
versus the perturbation amplitude at peak compression for different pertur-
bation mode numbers. Positive amplitudes correspond to spike-on-axis and
negative amplitudes correspond to bubble-on-axis, except forl 52 where
the situation is opposite. The lines were extrapolated~dashed lines! to the
region of high perturbation amplitudes for which the self-similar solutions
do not exist.
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there is a discrepancy in the sign of the perturbation ampli-
tude; in the simulations the yield is increased for bubble-on-
axis perturbations, while the self-similar solutions were ob-
tained for spike-on-axis perturbations.

This discrepancy is a result of a phase reversal in the
self-similar solutions ofl 52 as demonstrated in Fig. 11. The
figure shows the temperature contours of self-similar solu-
tions with l 52 and 6 for negative and positive perturbations
amplitudes,e. It is seen that while the contour of 4 keV,
according to which the amplitudej was defined, is in a spike

~bubble! on axis configuration fore.0(e,0) for both l
52 and 6, high temperature contours are in an opposite con-
figuration for thel 52 case. Since the main thermonuclear
burn takes place in the high temperature region, we should
treat thel 52 case withe.0(e,0) as a bubble~spike! on
axis perturbation in contrast to the definition applied to all
other mode numbers. Hence, the decrease in the required
velocity needed for ignition shown forl 52 in Fig. 9 is re-
lated to bubble-on-axis configuration and is in agreement
with the complete simulations that show that a small bubble-
on-axis perturbation can indeed help the ignition of the hot
spot.

The physical reason for the apparent anomalous behav-
ior of l 52 is that for low enough mode numbers the bubbles
become decoupled from the spikes and thus the burn may
take place in the bubble alone, which has an higher optical
depth than the radius of the unperturbed hot spot.

In Sec. II we analyzed 2D numerical simulations of hot
spot implosions and showed~see Fig. 2! that the critical final
amplitude, above which the hot spot no longer ignites, de-
creases monotonically with the perturbation mode number
and at high mode numbers it converges asymptotically to the
value predicted by Levedahl and Lindl’s formula, Eq.~1!.
While Levedahl and Lindl’s model explains only the
asymptotic behavior in the high mode number region, the 2D
self-similar solutions can be used to explain the entire
behavior—from low to high mode numbers. The simulations
of Fig. 2 were performed with an implosion velocity 10%
higher than the critical implosion velocity needed for the
ignition of the symmetric hot spot. Hence, the critical final
amplitude for this case can be obtained from the 2D self-
similar ignition criteria by intersecting the ignition curves of
Fig. 9~b! with the v/v051.1 line. In Fig. 12 the self-similar
results are compared with the simulation results of Fig. 2. A
good agreement between the self-similar model and the
simulations is seen. The maximal discrepancy is obtained for
mode numberl 52, for which the self-similar criteria predict
a critical amplitude of 50% while in the simulations ignition
already fails at amplitudes of 40%.

FIG. 10. Target yield versus perturbation amplitude forl 52. An increase in
the yield is seen for small bubble-on-axis perturbations.

FIG. 11. Temperature contours of a 2D self-similar solution forl 52 and 6
with negative and positive amplitudes. The white and black contours corre-
spond to 4 and 50 keV, respectively.

FIG. 12. The critical final amplitude versus the perturbation mode number.
The simulation results for targets with an implosion velocity 10% higher
than the symmetric ignition velocity (v/v051.1) are compared with the
self-similar model results forv/v051.05, 1.1 and 1.15.
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D. A gain model for a general perturbation

The arguments used to determine the required increase
in the implosion velocity needed for ignition can be taken
even further in order to give an approximate formula for the
yield Y(v0 ,l 0 ,j0) of a general target as a function of the
implosion velocity and the perturbation characteristicsl 0 and
j0 :

Y~v0 ,l 0 ,j0!5Y~v0 ,R̂eff~ l 0 ,j0!! ~6a!

5Y~v0 ,R̂eff~ l 5`,j512R̂eff~ l 0 ,j0!!! ~6b!

5Y1D~v0•R̂eff~ l 0 ,j0!2/5!. ~6c!

The main assumption in Eq.~6!, reflected in the first equality
~6a!, is that the perturbation affect the gain curve via the
reduction of the effective radius of the hot spot and that the
relevant effective radius of the hot spot is the same as the
effective radius that was defined for the IL. The second
equality,~6b!, relies on the fact that for high mode numbers
only the inner clean radius contribute to ignition,R̂eff(l
5`,j)512j, and translates the imposed perturbation of any
l 0 to a short wavelength perturbation with the same effective
ignition radius. The last equality,~6c!, uses Levedahl and
Lindl’s formula23 to connect between the effective short
wavelength perturbation and a 1D simulation with reduced
implosion velocity.

Equation~6! gives an estimate for the effect of perturba-
tions on the yield of a general target, based only on 1D
simulations of the given target with an implosion velocity
reduced byR̂eff(l,j)2/5, whereR̂eff(l,j) is given by the self-
similar solutions@Fig. 9~a!#. We tested this formula against
our complete 2D simulations results. The comparison is
given in Fig. 13, which shows the yield as a function of the
perturbation amplitude at peak compression for different per-
turbation mode numbers. It is seen that the model gives the
right behavior and is in good agreement with the simulations
compared to what could bea priori expected form such a
simplified model. Still, it is important to note the two main

differences seen between the model and the simulations.
First, the critical amplitudes predicted by the self-similar so-
lutions are slightly higher than the ones obtained by the
simulations in the very low mode numbers regionl<3 ~see
also Fig. 12!, this difference, however, corresponds to a shift
of one unit only in the mode numbers~l 52 in the simulation
correspond tol 53 in the model!. Second, the shape of the
gain curve is sharper in the simulations compared to the
model, which is a results of the approximation~6c! which
define an effective reduction in the implosion velocity by
extending Levedahl and Lindl’s formula23 to regions of gains
higher than one.

When a multimode perturbation is imposed, the effective
radius, or effective amplitudejeff512R̂eff , needs to be de-
fined as a function of the spectrumj( l ) of the perturbation at
the time of hot spot stagnation. For each model of the per-
turbation, an effective amplitudejeff(l,j(l)) would be defined
such that the perturbation@ l ,j( l )# would have the same ef-
fect as the perturbation@ l 5`,jeff(l,j(l))#. Then the effective
amplitude of the overall multimode perturbation would be

jeff5A(
l

jeff
2 ~ l ,j~ l !!. ~7!

We now need to define the effective amplitudesjeff(l,j(l)) for
each mode number. As was pointed out~see Fig. 9!, the
effect of a single mode long wavelength perturbation is
highly nonlinear with the perturbation amplitude—the effect
of small amplitudes on the effective radius is very mild and it
becomes prominent only when the amplitude gets large
enough. When considering a multimode perturbation one
should therefore take into account that while the amplitude
of a specific mode might be in the ‘‘small amplitude’’ region,
the overall amplitude of the multimode perturbation might be
much larger~typically in the 20%–40% region!. Thus we
need to use the effective physical amplitude of many adja-
cent modes instead of the individual amplitudes, which are
much smaller, thus effectively reducing the resolution in the
mode space~in some analogy to Haan’s saturation model18

for Rayleigh–Taylor growth!. We propose that an adequate
way to account for the combined effect of the modes is to
define the effective amplitudes of the given modes as

jeff~ l ,j~ l !!5
j~ l !

jc~ l ,v̂ !
jc~ l 5`,v̂ !, ~8!

wherejc( l ,v̂) is the critical amplitude as given in Fig. 12
andv̂ is the ratio between the actual velocityv0 of the target
and the velocity that causes failure of the hot spot in the
symmetric case.

The yield of a multimode perturbation is thus given in
our model by Eq.~6!, whereReff512jeff andjeff is given by
Eqs.~7! and ~8!.

We tested our approach on the results of multimode
simulations performed by the Laboratory for Laser Energet-
ics ~LLE! group for the direct drive ignition capsule of the
NIF.42 Mckenty, Goncharovet al. had shown that the target
gain could be well represented in terms of an effective am-
plitude defined as the route of a weighted sum-in-quadrature
of the amplitudes of the different modes at the end of the

FIG. 13. A comparison between complete 2D simulations and the model
@Eq. ~6!#. The yield of the perturbed target is shown versus the perturbation
amplitude at peak compression for mode numbersl 52, 3, 6, 10, and 26 in
the simulations and 3, 4, 6, and̀in the model~the lines are in sequential
order starting from the low modes at the right of the figure!.
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acceleration phase.42 Their best fit for these weights is 0.06
and 1 for the long (l ,10) and short (l>10) wavelengths,
respectively. This separation to long and short wavelength
and the larger effect of the short wavelength perturbations is
in accordance with the critical amplitude of the different
modes, Fig. 12, which reach a plateau aroundl 510. The
approach presented here, Eq.~8!, actually uses these critical
amplitudes to define the specific weighs of the different
modes. Note, however, that our approach is defined for the
amplitudes at the time of stagnation rather than for the end of
the acceleration phase. Using the spectrum of perturbation
amplitudes at the time of stagnation for the same target used
in Ref. 42, we have calculated the effective amplitude of a
mixed region at stagnation by Eqs.~7! and ~8!. Figure 14
shows the yield of the target, subjected to different multi-
mode perturbations, as a function of the effective amplitude
at the time of stagnation. It is seen that the yield indeed
depends, to a good approximation, on this effective ampli-
tude alone. Note that the model holds for a wide range of
perturbation spectrums with a large variability in the relative
contribution of low and high perturbation modes.

V. CONCLUSIONS

Ignition conditions for perturbed hot spots were investi-
gated using both full 2D numerical simulations and a model
based on new 2D self-similar solutions. Using 2D numerical
simulations the critical final hot spot perturbation amplitude
~at peak compression!, above which the hot spot no longer
ignites, was obtained as a function of the perturbation mode
number. It was found that at mode numbers larger than about
10 the bubbles evolving from the Rayleigh–Taylor instability
no longer contribute to the ignition process and the critical
final amplitude of the hot spot perturbation thus no longer
depends on the perturbation mode number.

The one dimensional self-similar approach for obtaining
the ignition criteria10 was extended to treat perturbed hot

spots. By letting the hot spot propagate into an outside per-
turbed density profile that decreases asrout}r 21(1
1A cosul), no new dimensional parameters are introduced
to the problem and the behavior remains self-similar. The
resulting 2D self-similar solutions were used to produce the
rR2T plane ILs for different final perturbation mode num-
ber and amplitude. The ILs obtained are higher than the IL of
the symmetric hot spot, reflecting the fact that perturbed hot
spots require a largerrR in order to ignite. The higher the
mode number is and the larger is its final amplitudes, the
higher is the IL.

The 2D ILs were related to higher implosion velocities
needed for the ignition of perturbed hot spots, using the 1D
Levendhal–Lindl high mode number limit scaling,23 which
relates the perturbation amplitude in the limit of high mode
number with the required increase in implosion velocity
needed for ignition. Since for low mode numbers the bubbles
still contribute to the ignition process the required increase in
the driver energy is lower compared to Levedahl and Lindl’s
prediction for the limit of high mode number perturbations.
These results were compared with the full 2D numerical
simulations at low and high mode numbers, and a good
agreement was found for the entire region of mode numbers.
An interesting result and picture had emerge for mode num-
ber l 52: The 2D self-similar approach predicts that a small
perturbation may actually help the ignition because the long
wavelength makes it possible for the burn to take place in the
two bubbles independently with negligible interference from
the cold spikes, enabling the ignition and burn to occur at
somewhat lowerrR. This prediction of the 2D self-similar
ignition criteria had been verified by full 2D simulations,
which indeed show a slight increase in the total yield due to
small perturbations of mode numberl 52.

Using the self-similar ignition lines together with
Levedahl and Lindl’s scaling, we proposed a model for pre-
dicting the gain of a general target with a single mode per-
turbation based only on 1D simulations with an appropriate
decrease in the implosion velocity. The model shows good
agreement with full numerical simulations both for high and
for low mode numbers. An extension of this single mode
gain-perturbation model to the more general case of multi-
mode spectra is suggested, by defining an effective mix re-
gion thickness which weights each mode according to its
single mode gain-perturbation amplitude curve. With this ef-
fective final amplitude, the gain of a given target subjected to
a given multimode perturbation spectra, is given. Good
agreement to results of NIF direct drive full 2D multi-mode
simulations is obtained.
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