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The effect of perturbations on hot spot ignition is studied using full two-dimens{@@alnumerical
simulations of the National Ignition Facilifyd. D. Lindl, Phys. PlasmaZ 3933(1995] direct drive
Laboratory for Laser Energetics target design and newly derived 2D self-similar solutions for a
perturbed burn wave propagation. It is shown that the required implosion velocity needed for
ignition increases with the perturbation mode number and final amplitude, reaching an asymptotic
value for high enough perturbation mode numbers, when the entire mixing zone no longer
contributes to the ignition of the hot spot. Using the new self-similar solutions, ignition conditions
for various perturbation mode numbers and amplitudes are obtained. These ignition conditions,
which correspond to areal densities higher than needed for ignition in the symmetric case, are
translated to a required increase in the implosion velocity needed for ignition, using the 1D
Levendahl-Lindl scaling, in good agreement with the full 2D numerical simulation results. Finally,
using the above results, a model for predicting the gain of a perturbed targets as a function of the
perturbation spectrdsingle-mode and multi-modes presented, in good agreement with full
numerical simulations. €2001 American Institute of Physic§DOI: 10.1063/1.1412009

I. INTRODUCTION evant physical mechanisms. It was shown that although this
The ignition of a central hot spot in the deuterium— spgcial b(_)undary cond_ition under which the _sc_elf—simila_r_so—
tritium (DT) fuel, which generates a thermonuclear bumlutlorjs eX|sjc, they provide a natural globgl |gn|t|9n condition
wave that propagates through the rest of the DT fuel, is cruthat is applicable for more general density profiles.
cial for achieving high gains in inertial confinement fusion. The main uncertainty in the design of ignition facilities,
Hot spot ignition and burn propagation are expected to b&uch as NIF, results from the effect of perturbatibrhe
demonstrated in the National Ignition Facilif}IF).! The literature presents several numerical investigations of the ef-
limited energy source of NIF is expected to provide rela-fect of perturbations on target ignition and gain. Effects of
tively marginal hot spot ignition with relatively small areal single mode long wavelength perturbations were studied by
densitie€ The hot spot is thus sensitive to spatial perturbathe Rochester grougverdort® and McCrory and Verddf)
tions which grow under the Rayleigh—Taylor instability and and later by Atzent>~ Perturbations with different mode
may quench the ignition. This motivates a detailed investiganumbersl and different amplitude# were investigated by
tion of the conditions under which the hot spot ignites and ofmeans of a two-dimensiona2D) numerical simulation. It
the effects of spatial perturbations on these conditfons. was found that the yield of the target decreases as the initial
The ignition conditions are often determined using sim-perturbation amplitud@ increases or as the mode number
plified, zero-dimensionalOD), Widner-type models of the increases. For a given mode numbehere exists a critical
hot spot2=® These models describe the hot spot by few charinitial amplitude above which ignition does not occur. The
acteristic variables: The radil® densityp, and temperature critical initial amplitude was found to decrease with the
T. The ignition line(IL) is then defined as the line in the mode numbet of the perturbation.
pR—T plane on which the energy loss and gain rates inside  Haanet al? estimated the robustness of the NIF baseline
the hot spot are balanced. In a previous wirkye showed target design to hydrodynamic instabiliies, which result
that a set of self-similar solutions, the existence of which wagrom the surface roughness. They used direct single mode 2D
first pointed out by Neudachin and SasotbV; can be used cajculations at different modes, combined with a saturation
to provide the ignition criteria while accounting for the radial model!® to estimate the perturbation amplitude at peak com-
critical profiles of the hydrodynamic variables inside the hOtpression that results from a given surface roughness. The
spot. The self-similar solutions exist for an outside densityeffect of the perturbation on ignition was modeled by direct
profile po, that decreases asrland it includes all the rel-  >p gimulations. It was found that spike amplitude of 30%—
50% of the hot spot radius would quench the ignition.
3Electronic mail: schwartz@bgumail.bgu.ac.il Direct 2D and 3D simulations of the NIF target with
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multimode perturbations were only recently studi&ed?The  Cone approximation, described below, which is more ad-
perturbed hot spot is seen to consist of a central clean regiogquate for modeling the 3D structures of bubbles and spikes
of low density D—T, surrounded by a mixing zone, composedhat are present in reality. Moreover, the Cone approach al-
of wide bubbles of the low density D-T floating outside lows the computation of relatively high mode numbers with
through the high density spikes. Although the initial pertur-a still reasonable numerical resolution.
bation contains many modes, the final perturbation is usually  For a given wavelength, two different 3D configurations
characterized by a single dominant wavelength, motivatingxist?®?° The first configuration describes bubbles that are
the single mode approach taken in the current work. surrounded by spikegbubble-ridge configurationand the
Levedahl and Lindf analyzed the effect of a short second configuration describes spikes surrounded by bubbles
wavelength mixing zone surrounding the hot spot on igni-(valley-spike configuration Haan proposed that these two
tion. They derived a scaling law for the increase in the im-3D configurations could be approximated in 2D simulations
plosion velocity required for ignition as a function of the within a Cone with reflective boundary conditich$he first
thickness of the mixing zone. configuration is approximated by a single bubble of appro-
In the current work the effect of perturbations on hot priate solid angle surrounded by a spike curtain falling along
spot ignition is studied using full two-dimensional simula- the reflective boundary conditions of the Cdriehe second
tions and new two-dimensional self-similar solutions. Theconfiguration is of opposite sign—a spike on the axis of the
simulations’ results are presented and discussed in Sec. II. I@one surrounded by a circular bubBle.
Sec. Il we compare the results with Levedahl and Lirfdl's In the present work we adopt the Cone approximation
formula. It is shown that their formula describe well the re-approach and focus mainly on the spike-on-axis configura-
sults of high mode number perturbations, but is not adequation, which has greater effect on ignition. A comparison be-
for describing low modes. Section IV presents a model fotween spike-on-axis and bubble-on-axis configurations is
the effect of perturbation on hot spot ignition, which is ad-brought in Sec. IV.
equate for a wide region of mode numbers. The model is  The simulations were performed on profiles cfdse C.
based on new 2D self-similar solutions derived as an extenverdon’s canonical direct drive design of NiE2°A veloc-
sion, proposed by Neudachin and Sasdfo¥o the 1D self- ity perturbation with a given mode numbleand amplitudeA
similar solutions presented in Ref. 10. Using these 2D selfwas imposed on the 1D profiles of this target, before the time
similar solutions, an ignition condition for perturbed hot the Rayleigh—Taylor instability beginghe 1D profiles were
spots is obtained as a function of the perturbation mode nuntaken from Ref. 31
ber and final amplitude. We then combine the 2D self-similar
ignition condition with Levedahl and LindFs scaling law to v20(r, ) =v1p(r)(1+Acoglo)).
give the increase in the implosion velocity required for igni- The simulations were performed in a Cone with an angle of
tion. Finally, in Sec. IV, we give an approximate formula for 24/| and with reflective boundary conditions. We shall refer
the yield of a general perturbed target as a function of theo | as the mode number of the perturbation, although it does
implosion velocity and the perturbation spectrum both fornot correspond to a pure Legendre polynomial mode. The
single mode and for multimode perturbations. initial perturbation amplitude is denoted Byto distinguish
it from the final perturbation amplitudé of the hot spot at

the time of stagnation.
II. TWO-DIMENSIONAL NUMERICAL SIMULATIONS The simulation code used is the LEEOR-2D c&#&®

FOR PERTURBED HOT SPOTS The code includes hydrodynamics, electron heat conduction,

Since real hot spots, as was discussed in the Introdudusion, a simple one group diffusion model ferparticle
tion, are usually dominated by a single mode at the time offansport and bremsstrahlung radiation losses. An ideal gas
ignition, we concentrate on single mode perturbations. Weequation of state was used for the DT fuel.
repeat the single mode calculations found in the The code assumes equal ion and electron temperatures
literaturé®~*"and extend them to higher mode numbers. Foroecause of their relatively small relaxation time. Fuel deple-
high I's a new behavior is obtained—the initial critical am- tion is not taken into account, as it is relatively low in NIF
plitude Ac no longer decreases withbut starts to increase. targets due to the lowR of the shell and, in general, its
This new behavior is presented and discussed. main effect is during the burn stage and it barely affects the
ignition stage in which we are interested. Taking into account
all these mechanisms, the resulting gain of the target was
found to be very close to the gain calculated by Vefddh

Three-dimensional calculations indicate that the multi-for the same targét.
mode 3D perturbation is an array of spikes penetrating the For the calculations presented here we used-& ge-
hot spot, surrounding approximately hexagonal bubbf8s. ometry mesh. Typically, the mesh consists of 15 cells in the
These 3D perturbations can be simulated directly using 3 direction (15 cells per half wavelengttand 65 cells in the
numerical code$?~?%or can be approximated by 2D codes in r direction. The rezoning scheme was set to keep an equal
various geometries. Both the Rochester grddp and partitioning in thed axis. In the radial direction the scheme
Atzeni® ! chose a 2D representation of the perturbations byvas set to move the cells of the hot spot shell lagrangianly
spherical harmonic modes with=0 (Legendre polynomial while keeping the inner hot spot cells uniformly distributed
modes. Following Haar? we chose the approach of a 2D between the center of the hot spot and the moving shell.

A. Description of the 2D simulations geometry and
the simulation code
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FIG. 1. ThepR—T plane (with pR= [pdr). Shown are the self-similar
ignition line for a symmetric hot spot and trajectories of a symmetric hot 35
spot and of a perturbed hot spot with mode nunibe6 and initial ampli- L
tude A=2.5%. The dots indicaté\t of 25 ps. The times of implosion, 30;
ignition, and burn wave propagation are marked by a, b and c, respectively.
25¢
=
B. The time evolution of a perturbed capsule =207
o
As a typical example of a simulation of a perturbed hot @15}
spot, we choose the case of mode numbeb and initial >
velocity amplitudeA=2.5%), for which the resulting final 10 ]
amplitude é=AR/R is 22%. This perturbation is not large 5t .
enough to quench the ignition and the development of the 0 10 20 30 R
hot spot both before and after ignition can thus be followed 0 Mode Number |5 1.
and compared with the development of the unperturbed hot 0 15 ) 30 45
spot. Figure 1 compares the trajectories in piie—T plane (b) Final Amolitude. € (%)

of the perturbed ar_1d unp_erturbed targets. . . FIG. 2. Yield of perturbed hot spots versus the perturbation injiaknd

In the early implosion stage the hot spot is still final (b) amplitude for different mode numbers between 2 and 26. Inset: the
Rayleigh—Taylor stable, the perturbation is small and the traeritical amplitude versus the perturbation mode number. Fighjealso
jectories are relatively close. Then, at about the time markeghow the yield of the symmetric 1D case i_n which the i_mplosion _velocity is
by “2”in Fig. 1. the Rayleigh—Taonr instability begins the reduced byAv as a function of the effective perturbation associated with

. ! ) . . ! that reductior Eq. (2)].
perturbation starts to grow and the trajectories diverge from
each other.

The time of ignition, marked by “b” in Fig. 1, is char- figure shows the yield of the target relative to the yield of the
acterized by a sudden increase in the hot spot temperaturenperturbed target as a function of the initial perturbation
This sudden increase is seen by the distance between tlagnplitude for different mode numbers. This figure is analo-
points along the trajectories, which are marked at time intergous to the figures shown in Refs. 13-17, except that it is
vals of 25 ps. It is seen that the ignition of the symmetricextended to higher mode numbers. The critical initial ampli-
case occurs as the 1D self-similartflis crossed. Ignition of tude is shown in the inset as a function of the perturbation
the perturbed hot spot, however, is seen to occur above thode number.

IL. The hot spot at that time is highly perturbedR/R Our calculations indicate a new behavior in the exten-
=0.22), which increases the energy loss rates from the hation of the results of Refs. 13—17 to high mode numbers. It
spot and thus requires a highgR for ignition. In other is seen from Fig. @) that at highl's, the critical amplitude
words, the IL’s for perturbed hot spot should be higher tharAc no longer decreases with but starts to increase. Thus,
the IL derived for the symmetric hot spot. After ignition the the moderate wave numbe(sf | =5-12 are the most dan-
trajectories propagate along a working line which is parallelgerous ones. The different behavior seen in low and high
to the stable right branch of the IL. At this stage, the propaimode number is, as explained below, due to the effects of
gation of the burn smears out the perturbation and thus thgvo different physics: The Rayleigh—Taylor growth of the
perturbed hot spot propagates along the same working line agodes is the dominant physics that determines the critical

the symmetric hot spdf amplitude in high mode numbers and the effect of a given
mode on ignition is the dominant physics in low mode num-
bers.

C. The critical initial and final amplitudes The effect of the different Rayleigh—Taylor growth fac-

The resulting yields and critical amplitudes of the vari- tors of the different modes is eliminated in Figh2 which
ous simulations performed are summarized in Fig).2ZThe  shows the same data of Fig(a® but as a function of the
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final amplitude of the hot spot defined = AR/R, at the 7 .

time of peak compression. This way, only the ignition phys- - zf:lg, 2222%
ics is left; decreasing the mode number causes a decrease i1 g 6} ' 1-D: vo(1- &)
the effective area to volume ratio, which allows ignition with
higher amplitudes.

Hence, the increase in the critical initial amplitude with
the mode number seen in Figa2in the high mode region is
not a result of a reduced effect of the higher mode on igni-
tion, but is a consequence of the reduced Rayleigh—Taylor
growth factors of the high modes. An increase in the mode
number in this region causes a decrease in the growth factor
due to early saturation of the higher modes.

Itis seen in Fig. B) that as becomes higher than some
specific wave numbel* (which is approximately 8 in our
cas@ the critical final amplitudet: does not increase with 0 < . . :
increasing, but converges asymptotically to a certain value. 0.4 0.6 0.8 1 12 1.4
This asymptotic behavior results from the fact that in the Time (nsec)
region of mode numbers higher th&h the bubbles do not i, 3. The total optical depth of the targéhin lines and the hot spot
contribute any more to the fusion process and they no longaemperaturéthick lines are shown as a function of time for three targets: an
he|p in the |gn|t|on process. In this region on|y the C|eanunperturbed target with implosion velocity(1D), a perturbed target with

: : it =10,£=22%, andvy(2D), and a symmetric target with reduced implosion
inner part of the hot spot contributes to ignition and thus thévelocityu:vo(lfg)z’s(lD*). Inset. The total optical depth at the moments

critical final amp“tUde no Ionger d_epends on the perturbatior?n which the hot spot temperature reaches 4, 6, and 12 keV versus the target
mode number. The fact that for high mode numbers only thgield as the perturbation amplitudés varied(2D) and as the corresponding

clean inner part of the hot spot contributes to ignition wasmplosion velocity in a symmetric target is varied (1P
used by Levedahl and Lindfito determine the required in-
crease in the implosion velocity needed to ignite hot spots

with high mode number perturbations, as described in theocity or fuel entropy is changed. Other classes of implosions

5 5

Ipdr (g/em?)

), Hot Spot Temp. (10*k
-

Yield (MJ)

-
\~|')"
"
O

N

fpdr (g/em

vV
e,

next section. result different scaling lawé 6 and are not considered in
the current work.

lll. THE IMPLOSION VELOCITY REQUIRED FOR Let us now phrase the relation of EQ) from a some-

IGNITION OF A PERTURBED HOT SPOT what different point of view. Since a perturbation can be

compensated by an increase in the implosion velocity, we
From the practical point of view, the most important re- may say that the perturbation is equivalent to a decrease in
sult of studying the effect of perturbations is to specify thethe implosion velocity by the same amount. A symmetric hot
required increase in the implosion velocity needed for igni-spot with implosion velocity reduced byv would thus be

tion in the presence of a perturbation. For high mode numbeghe equivalent of a perturbed hot spot with an amplitéde
perturbations, Levedahl and Lifdisuggested a simple, but defined by

yet powerful, scaling law that relates the required increase in B 5

the implosion velocity to the amplitude of the perturbations.  §= 1-[(vo—Av)/vo]™ 2
Levedahl and Lindl's idea consists of two main assumptionsin Fig. 2(b) this formula was used to plot the yield of 1D
The first is that for perturbations with high mode numberssimulations of a symmetric hot spot in which the nominal
[see Fig. 8a) below, only the inner clean part of the hot spot implosion velocityv, was reduced by a varied amount, .
contributes to ignition. The second is that the required in-As expected, it is seefFig. 2b) insef that Levedahl and
crease in the velocity is of the same magnitude that would jndl's 1D model represents the asymptote at ldig®f the
have been required if the entire capsule had been rescaledighition threshold of full 2D simulations. Less expected,
size by the ratioRyea/ Ry, Of the clean to unperturbed hot however, is the fact that the model describes well not only
spot radii. Then, using Livermore scaling laig.v "> the ignition threshold but also the whole gain curve of high
between the driver energy required for ignition and themode number targets. In general, the burn efficiency of a
achieved target implosion velocitghe relation between the target depends only on its totfldr once it has ignited.
required increase in the implosion velocity and the perturbat evedahl and Lindl's model, however, describes the effect of

tion amplitude was obtainéd mix on the implosion velocity required to achieve ignition
. Reearl €)| 28 and says nothing about burn efficiency or yield. To under-
vm'x = (% =(1-¢) %8 (1)  stand how could the ignition model of Levedahl and Lindl's
0 0

be extended to gain predictidh,we refer to Fig. 3. The
The resulting increase; i /vg, in the implosion velocity figure shows, as a function of time, the average temperature
required for ignition when high mode number perturbationsof the hot spot and the total target optical depflpdr) for

are present is shown below in Figh). Note that Levermore three variations of the target: An unperturbed target with im-
scaling law apply to the class of implosions in which theplosion velocityv, (1D), a perturbed target with=10, ¢
implosion pressure is kept constant while the implosion ve=22% and the same implosion velocity (2D), and a sym-
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metric target with reduced implosion velocity=uv(1 120 =2

—£)?5(1D*). The 1D target has a yield of 32 MJ and both LG ‘\ o 12

the 2D target and the IDtarget have a yield of about 5 MJ, . 80| | —— =16 147 o 10

which is a demanding point right on the gain cliff. As seenin ~ § — k3 1, 2 g

the figure, the cause for the reduction in yield is notaresult =~ 40f s 7—»/, 15 ag_ 4

of a reduction in the maximal optical depth achieved, which / é”z g 2

is hardly affected by neither the 2D perturbation nor by the 0 F o =
1D* reduced velocitythe reduced velocity naturally causes (@) 9 42 (um?o I (b) 0 01020304

a slight delay in the implosion schedule, but the maximal fp dr (g/em?)

optical depth is barely affect¢dLooking at the hot spot _ _

temperature, however, it is seen that unlike the 1D targegle?mfﬁa&%r:‘ﬁ;ﬁ%?ﬁsreetmeﬁ?“;?gmmqdﬁe’) and high mode|E16)
plitudes chosen to get the same gain

which ignites in concert with the maximal optical depth, the c=2). Shown at the time of ignition are the temperature conté@rand

2D and the 1D targets ignite much later when the target the temperature profiles as a functionfefdr along the Cone surfad¢hick

optical depth is considerably lower. This lower optical depthlines. where the bubbles are located, and along its ks lines, where

. S . . the spikes are locate(h).

at the time of ignition is responsible for the reduced yield of

the target. This is also seen in the figure inset which summa-

rize the results of targets with other perturbation amplitudes

¢ and their corresponding symmetric targets with reducedvith an amplitude of about 33% in peak compression relative

velocity. The inset shows the relation between the total yield0 only 22% for thel =16 casg Indeed, it is seen that while

of the target and its optical depth taken at times when the hdhe tips of the bubbles of the two hot spots reach approxi-

spot temperature reaches 4, 6, and 12 keV. Looking at th@ately the same radiysbout 110um in Fig. 4a)] and the

optical depth at the time when the hot spot temperaturéame optical deptfabout 0.4 g/crhin Fig. 4b)], the spike

reaches 12 keV, it is seen that the yield is a function of theof the |=3 hot spot penetrates much more than in the

optical depth alone and scales in the same way for the 207 16 case(0.1 g/cnf, 40 um versus 0.2 g/cfy 70 um) and

and for the 1D cases. It is also seen that at slightly earlietill both targets ignite in the same way and achieve the same

times, when the hot spot temperature is 4—6 keV, the opticdptal yield.

depth of both the 1D and the 2D cases is totally independent The Levedahl and Lindl argument can be formally ex-

of the target’s yield. The 2D perturbation and the reducedended to include also the effect of perturbations with low

velocity in the 1D case thus seem to affect the yield bymode numbers. As we have seen, for low mode numbers the

disturbing and delaying the ignition process allowing morebubbles still contribute to the ignition of the hot spot. Hence,

time for the target to expand and thus reducing the actudhe perturbed hot spot should be equivalent to an unperturbed

optical depth of the target at the time of ignition. LevedahlSymmetric hot spot with an effective radiuBey, that is

and LindlI's model indeed describes only the effect of perturlower than the unperturbed radil, but higher than the

bation onignition, but it does it so well that not only it gives inner clean radiuRqea, [see Fig. &)]. Given the effective

the threshold for ignition, but also the right delay in ignition radius, Req(1,€), as a function of the perturbation’s mode

for marginal targets. This right delay in ignition is then trans-number and amplitude the increase in the velocity required

lated to the right reduction in the optical depth and thus tdor ignition is given using the same formula that Levedahl

the right yield for the target. and Lindl used, except that noRg.,{ €) should be replaced
It is apparent, however, from Fig(l9 that the Levedahl ~With Reg(l,£)

and LindI's formula does not explain the relatively high final v | Re(1,6)) 25

amplitudes needed to quench the ignition for low mode num- oo =( Ry ) =Re(l,£) 25, 3

ber perturbations. In order to explain the difference between
low and high perturbation mode numbers, let us now com-The main difficulty in using Eq(3) for determining the re-
pare these two limits. Figure 4 compares the temperaturguired increase in the implosion velocity is to obtain the
contours and radial profiles at the time of ignition, when the
temperature at the center of the hot spot is 13 keV, for two
different simulations with mode numbers 3 and 16 and with
initial amplitudes chosen as to achieve marginal ignition de-
fined by the same gaind=2). Although the temperature at
the center of the hot spot is the same, the temperature of the
hot spot’s bubbles is much higher in the low mode case than
in the high mode case. This is seen both from the relative
proximity of the 1.5 and 7 keV contours in Fig(a} and
from the temperature along the “bubble” profiles in Fig.
4(b). This difference in the bubble temperature between low
modes and high modes, which is due to the high tangential (a) (b)
energy losses in the high mode bubbles, allows the low mode

hot spot tq ig_nite with higher perturbation amp”tUde_S 6‘_1'{ peaks g, 5. schematic illustration of a hot spot with a highand low(b) mode
compressiortin the example shown, tHe=3 hot spot ignites  number perturbation.
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normalized effective radiuR.q(l,£) and its dependence on Temperature
the perturbation mode number and amplitude. 1 1
For high mode numbers the Levedahl and Lindl formula

| =

should be reproduced and we thus exp%g{(l,g) —1

— ¢, which means that only the clean inner part of the hot
spot contributes to ignition. For low mode numbers the
bubble still contributes to ignition and we should expect

Rei(,9) to be somewhere between the spike tips,& and

t= 120psec’ t= 200psec

r (mm)

the bubble tips, ¥ £. In the next section we shall see that 00 1°0 1
new 2D self-similar solutions can be used to obtain the ef- z (mm) z (mm)
fective radius.
0 10 20 30 40 50 O 10 20 30 40 50
(keV) (keV)
IV. IGNITION CRITERIA USING TWO-DIMENSIONAL
SELF-SIMILAR SOLUTIONS Density

1

As was shown in Sec. Il, the hot spot’'s thermodynamic
properties are hardly affected by perturbations in the implo-
sion stage and their main influence is during the approach tc
ignition stage. In this section the ignition conditions for per-
turbed hot spots are derived using new 2D self-similar solu-
tions. The derived ignition criteria will then be used to define
the required increase in the implosion velocity needed for
ignition and the yield of a perturbed target. 0

t= 120psec t= 200psec

r (mm)

0 z(mm) 1

0 102030405060 0 5101520253035
(g/cms) (g/cma)

A. The two-dimensional self-similar solutions

In Ref. 10 it was shown that self-similar solutions for the
propagation of the hot spot, which include all the relevant
physical mechanisms, exist for an outside density profile(a)
pour=S/T. The set of 1D self-similar solutions with different

values of the parametsrwas mapped into theR—T plane 4

to obtain the IL for symmetric hot spots. We shall now see E 3 = ta

that the same procedure can be applied for perturbed ha 2 s 11,0

spots, namely deriving 2D self-similar solutions and use §2 - 12,a

these solutions to obtain the ignition criteria for perturbed = 1R - -toc

hot spots’® s | E [ '
The 1D self-similar solutions can be extended to include 0 05 1 13 °‘00 05 1 13

spatial perturbations by imposing a modulation on the out- () r/R(t) r/R(t)

side density profile of the form
FIG. 6. A typical 2D self-similar solution at two different time® Tem-

(4) perat'ure anq Qensity contouré) Raqlial profiles of the tgmperature and
density(multiplied by the hot spot radiliglong the Cone axigl,a and t2,a
and along the Cone surfa¢gl,c and t2,&

This way, no new dimensional parameters are introduced and

the solution should, therefore, remain self-similar.

In the 1D case, the separation of variables reduced th&his approach is analogous to Neudachin and Sasorov’s ap-
partial differential equations to ordinary differential equa- proach for the 1D solutio$*?and it allows only the stable
tions in the variable=r/R(t). These equations could be solutions to be obtained.
solved by a simple numerical integration. In the 2D case, An example of a 2D self-similar solution for a perturbed
however, the equations cannot be reduced to ordinary diffefot spot withpR=0.6 g/cn?,®° =6 ande=0.9 is given in
ential equations. After reducing the time variable from theFig. 6. Figure 6a shows the temperature and density con-
2D equations, a set of partial differential equations with twotours of the hot spot and the surrounding cold fuel at two
variables¢ and 6 is obtained. Hence, the 2D self-similar different times. Figure ®) shows the radial profiles of the
solutions could not be obtained by means of a simple nutemperature and density on the Cone surfdmgbble and
merical integration. Instead, we obtained the solutions usinglong the Cone axigspike. It is seen that the whole 2D
2D simulation in which an initial hot spot is ignited at the maps of the temperature and the density are similar to them-
center of a density profile of the form of E@t). The solution  selves up to changes of scale. As in the 1D case, the scale of
was found to converge to the asymptotic self-similar solutiorthe temperature does not change with time, while the density
after the burn wave propagates a few initial hot spot radiiscale decreases ast 1br 1R, since Rxt). To emphasize

s
Poulr,0)= F(l+ecos€l).
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=2, 8_70%, E=12%  |=4, e=70%, £E=14% Fig. 7). The physical cause of this limit @fis the tangential
, __ - energy transport mechanisms, which tend to heat and reduce
the cold spikes penetrating the hot spot. We should expect
these tangential conduction mechanisms to decrease as the
wavelength of the perturbation is increased and thus larger
perturbation amplitudes should be obtained for smaller per-
turbation mode numbers. This can be seen when comparing
I=4 andl =6 with e=70%, which result=14% and 12%,
I : respectively.
0 2R 1 0 2R 1 For small modulation amplitudes the 2D self-similar so-
lution is similar to its corresponding 1D self-similar solution.
I=6, e=70%, £=12%  |=6, €=99%, £=24% However, the interesting solutions, from the point of view of
’ s the ignition conditions, are those with relatively high pertur-
bation amplitudes. In these solutions the tangential mecha-
nisms become important for the ignition procdsse also
Fig. 4 and the propagation of the thermonuclear burn wave
is possible due to these tangential mechanisms. Without tan-
gential interaction, the 2D solution would be composed of a
series of 1D solutions, such that the profiles along any direc-
tion, 6, are the profiles of the 1D self-similar solution that
corresponds to the boundary condition paramsige s(1
+ ecosdl). For the high modulation amplitudes shown in
Fig. 7 and foré close to the Cone surface;p is actually
T lower than the critical values., defined in Ref. 10 as
10 20 30 40 50 60 the value ofs below which there are no 1D self-similar
solutions. The propagation of a thermonuclear burn wave

FIG. 7. Temperature contours of Splke on-axis 2D self-similar solutions foralong thesee’s |S thus pOSSIbIe only due to the tangentlal
different perturbation mode numbers and amplitudes. mechanisms

r/R

0

'R

B. Ignition criteria for perturbed hot spots using the

these scalings, the density profiles in Figb)owere multi- 55 Sait-similar solution

plied by the hot spot radius and the color scales in Fig) 6
were drawn according to the scaling of the corresponding For each mode number,and hot spot amplitudg, a set
variables(the temperature scale is 0—50 keV for both valuesof 2D self- S|m|lar solutions exist for different values of the
of t, while the density scale is 0-60 g/éfior t=120ps and Parameters™ Each of these sets can be mapped into the
0-35 g/cni for t=200 ps according to thetiflependende ~ PR—T plane to produce the IL for a hot spot with the given

The solution shown in Fig. 6 is only an example; there isPerturbation mode number and amplitude. The mapping is
actually a three parameter family of self-similar solutionsdone using the following definitions:
determined by the boundary condition parameters: The opti-
cal depth parametes, the perturbation mode numbkmland T=— | pTdV,

. . M Jv

the perturbation amplitude

The solutions withe>0 describe spike-on-axis perturba- all 3
tions (see the temperature contours in Figa®d those with pR= —1 cod i f 5 S(1+ecoslg)sinodo, (5

. . . mll)

e<0 describe bubble-on-axis perturbations. We shall now
present the spike-on-axis solutions in more details. Fowhich are the natural extensions of the definitions used for
bubble-on-axis perturbation, concluding results are showihe symmetric case, in Ref. 10.
and a comparison with the spike-on-axis solutions is made. The resulting IL's are shown in Fig. 8 together with the
In general the bubble-on-axis results are similar to the spikelL of the unperturbed hot spot. It is seen that the IL's of the
on-axis results except for the case lef2, which will be  perturbed hot spots are higher than the IL of the symmetric
considered separately. Figure 7 shows the temperature prbet spot(except for thd =2 case with relatively low ampli-
files of four self-similar solutions with the same effectpi®@ ~ tudes, which will be discussed belpwlhe lines get higher
and different amplitudese, and mode numberd, of the as the perturbation amplitude is increased and as the mode
outside density modulation. For each 2D self-similar solu-number is increased. A higher IL means that larger hot spots,
tion, the perturbation amplitudg= AR/R,*® which is a time  with higher pR, must be produced in order to achieve igni-
independent parameter characterizing each solution, is indtion in the presence of perturbations. This is in agreement
cated in the figure. The amplitudeis a monotonic function with the results of the simulations presented in Fig. 1, where
of the amplitudes. However, even whea approaches 100%, it was shown that perturbed hot spots ignite at highBr
the obtained amplitudet of the resulting hot spots is than the unperturbed hot spot. A complete comparison with
bounded £=24% fore=99% and =6 in the case shown in the simulation results is brought in the next subsection.
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FIG. 8. The ignition lines in theR—T plane for perturbed spike-on-axis y \ \
hot spots compared to the ignition line for symmetric hot spot. The ignition N 44 * » 5 . ; et
lines for the perturbed cases were obtained only for the stable right branch -50-40-30-20-10 0 10 20 30 40 50
and were extrapolated to the unstable left branch keeping a constant distance (a) Peak Compression Amplitude, € (%)

from the 1D ignition line.

C. The required increase in the implosion velocity
needed for ignition

The higherpR needed to ignite a perturbed hot spot can o 11
be related to a higher implosion velocity needed for ignition. 2 :
In Eqg. (3), the increase in the required implosion velocity X 4
was defined in terms of the effective radius of the hot spot. >71.05}
The idea is that the effective radius as a function of the =
perturbation’s mode number and amplitude can be reduced
from the 2D self-similar IL's presented in Fig. 8. Using these
IL's, the ratio of the effective to the unperturbed radius is
defined by

095 —
~50-40-30-20-10 0 10 20 30 40 50

Rei(1,€) _ (PR)min (b) Peak Compression Amplitude, & (%)
Ro  (PR)in’

D - ) o FIG. 9. The normalized effective radiga) and the corresponding increase
where ER), is defined as the minimglR along the 1D in the implosion velocity required for ignitiofb) for perturbed hot spots

self-similar 1L and @R)lm%n is defined as the minimgR versus the perturbation amplitude at peak compression for different pertur-

along the 2D self-similar IL of a perturbed hot spot with the batloq mode nymbers. Positive amplitudes correspond to spike-on-axis and
negative amplitudes correspond to bubble-on-axis, except=f@& where

given perturbation mode numbkand amplitudet. The 0b- e situation is opposite. The lines were extrapoldtiashed linesto the
tained effective radius is shown in Fig(a®. It is seen that, region of high perturbation amplitudes for which the self-similar solutions
except for thd =2 case, the effective radius is lower than thedo not exist.
unperturbed radius and it is decreases with the perturbation
amplitude and with the perturbation mode number. As ex-
pected, the effective radius is always higher than the cleaspike-on-axis €>0) results. For the bubble-on-axis configu-
radius of the spike tips and converges to itl asw. ration, a slightly lower implosion velocity is needed than for
The effective radius of the self-similar solutions was in-the spike-on-axis configuration.
troduced into Eq(3) to obtain the required increase in the For the mode numbdr=2, an apparent anomalous be-
implosion velocity needed for ignition. The resulting implo- havior is obtained. According to the self-similar solutions, up
sion velocity is shown in Fig. ®) as a function of the per- to amplitudes of about 30% the required implosion velocity
turbation amplitude at peak compression for different modeneeded for ignition ismallerthan that needed for the sym-
numbers. Thel=< line corresponds to the results of metric case. In other words, & 2 perturbation with a low
Levedahl and Lindl. It is seen that the lines of the high modeamplitude may actually help the ignition of the hot spot.
numbers(l=6 and 12 are relatively close to the=« line This apparent anomalous behavior, predicted by the 2D
and coverage to it as the perturbation amplitude is increasedelf-similar solutions, is verified in Fig. 10 by means of di-
This convergence is seen to occur 1/ as the aspect rect 2D simulations. The figure shows the yield of a target
ratio of the bubbles becomes high enough so that the bubblegith an implosion velocity slightly above the critical velocity
no longer contribute to ignition. For low mode numbéfee  needed for ignition, versus the perturbation amplitude at
<4 lineg the bubbles do contribute to ignition and the re- peak compression for amplitudes with mode number.
quired velocity is thus lower than the results of Levedahl andndeed, in agreement with the prediction of the self-similar
Lindl. For the mode numbets>2, itis seen in Fig. 9 that the solutions, small perturbation amplitudes are seen to increase
bubble-on-axis €¢<0) results are similar in nature to the the yield of the target. However, at first sight, it seems that
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FIG. 12. The critical final amplitude versus the perturbation mode number.

FIG. 10. Target yield versus perturbation amplitudelfer2. An increase in ~ The simulation results for targets with an implosion velocity 10% higher
the yield is seen for small bubble-on-axis perturbations. than the symmetric ignition velocityv(v0=1.1) are compared with the
self-similar model results foy/v0=1.05, 1.1 and 1.15.

there is a discrepancy in the sign of the perturbation ampli-
tude; in the simulations the yield is increased for bUbble'On'(bubble on axis configuration fore>0(e<0) for both |

axis perturbations, while the self-similar solutions were ob-_, . & high temperature contours are in an opposite con-
tained for spike-on-axis perturbations. figuration for thel=2 case. Since the main thermonuclear

This discrepancy is a result of a phase reversal in the,,, taxes place in the high temperature region, we should
self-similar solutions of =2 as demonstrated in Fig. 11. The .o+ thel =2 case Withe>0(e<0) as a bubbldspike on

f!gure shows the temperature' contours o'f.self-5|m|lar _SOIuéxis perturbation in contrast to the definition applied to all
thhS.WIth|=2 ar?d 6 for negatlve.and positive perturbations 1o mode numbers. Hence, the decrease in the required
amphtu_des,e. It_|s seen tha_t while the (_:ontogr_of 4 k_eV, velocity needed for ignition shown fdi=2 in Fig. 9 is re-
according to which the amplitudewas defined, is in a spike 5164 1o pubble-on-axis configuration and is in agreement

with the complete simulations that show that a small bubble-
on-axis perturbation can indeed help the ignition of the hot
I=2, e=—90%, £&=—30% |=6, e&=—90%, E=—16% spot.

' o I B B A S The physical reason for the apparent anomalous behav-
ior of | =2 is that for low enough mode numbers the bubbles
become decoupled from the spikes and thus the burn may
take place in the bubble alone, which has an higher optical
depth than the radius of the unperturbed hot spot.

In Sec. Il we analyzed 2D numerical simulations of hot
spot implosions and showesgee Fig. 2 that the critical final
amplitude, above which the hot spot no longer ignites, de-
0 zZ/R 1 0 ZR 1 creases monotonically with the perturbation mode number

o o o o and at high mode numbers it converges asymptotically to the
=2, £=90%, £§=24%  |=6, e=90%, £=18% value predicted by Levedahl and Lindl's formula, Ed).

RN ey ey " While Levedahl and Lindl's model explains only the
asymptotic behavior in the high mode number region, the 2D
self-similar solutions can be used to explain the entire
behavior—from low to high mode numbers. The simulations
of Fig. 2 were performed with an implosion velocity 10%
higher than the critical implosion velocity needed for the
ignition of the symmetric hot spot. Hence, the critical final
amplitude for this case can be obtained from the 2D self-
0 zZ/R 1 similar ignition criteria by intersecting the ignition curves of
Fig. Ab) with thev/vy=1.1 line. In Fig. 12 the self-similar
results are compared with the simulation results of Fig. 2. A

S S — good agreement between the self-similar model and the
10 20 30 40 50 60 simulations is seen. The maximal discrepancy is obtained for
FIG. 11. Temperature contours of a 2D self-similar solutionl fe2 and 6 mode_ numbef.: 2, for which th.e s_elf-5|mll_ar Cnt.e”a Preql.Ct
with negative and positive amplitudes. The white and black contours corre@ Critical amplitude of 50% while in the simulations ignition
spond to 4 and 50 keV, respectively. already fails at amplitudes of 40%.

Temperatue (keV)
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40 " - differences seen between the model and the simulations.
35 — Model First, the critical amplitudes predicted by the self-similar so-
— - Simulations lutions are slightly higher than the ones obtained by the
307 simulations in the very low mode numbers regiea3 (see
5251 also Fig. 12, this difference, however, corresponds to a shift
= of one unit only in the mode numbefis= 2 in the simulation
% 20 correspond td =3 in the model. Second, the shape of the
> 15 gain curve is sharper in the simulations compared to the
10 model, which is a results of the approximati¢dc) which
define an effective reduction in the implosion velocity by
5t extending Levedahl and Lindl's formifato regions of gains
0 . . , higher than one.
0 10 20 30 40 50 When a multimode perturbation is imposed, the effective
Peak Compression Amplitude, & (%) radius, or effective amplitudé.s=1—R., needs to be de-

FIG. 13. A comparison between complete 2D simulations and the modefmed as a function of the SpeCtruﬁ“) of the perturbatlon at

[Eq. (6)]. The yield of the perturbed target is shown versus the perturbatiori€ time of hot Spqt stagna.tion. For each moaé the per-
amplitude at peak compression for mode numberg, 3, 6, 10, and 26 in  turbation, an effective amplitud&.x(l,&(1)) would be defined

the simulations and 3, 4, 6, andin the model(the lines are in sequential gych that the perturbatign, £(1)] would have the same ef-

order starting from the low modes at the right of the figure fect as the perturbatio[ﬂ — feﬁ(| §(|))] Then the effective
amplitude of the overall multimode perturbation would be
D. A gain model for a general perturbation 5
. - Ear=\| 2 Ex(1,E(1)). )
The arguments used to determine the required increase [

in the implosion velocity needed for ignition can be taken , . _
even further in order to give an approximate formula for theWe now need to define the effect|ye amphtu@gg_l,g(l)) for
each mode number. As was pointed dsee Fig. 9, the

yield Y(vg,lq,&) of a general target as a function of the . o
implosion velocity and the perturbation characteriskicand e_ffect of a smgle_ mode long wa_tvelength perturbation is
£o highly nonlinear with the perturbation amplitude—the effect
0 of small amplitudes on the effective radius is very mild and it
Y(vo.lg,€0)=Y(vo,Rello0.&0)) (6a)  becomes prominent only when the amplitude gets large
R R enough. When considering a multimode perturbation one
=Y(vo,Ref(l =2,§=1—Rei(l0,&0)))  (6b)  should therefore take into account that while the amplitude
B A o5 of a specific mode might be in the “small amplitude” region,
=Y10(vo" Rer(lo.£0)™)- 69 the overall amplitude of the multimode perturbation might be
The main assumption in E¢p), reflected in the first equality much larger(typically in the 20%—-40% region Thus we
(6a), is that the perturbation affect the gain curve via theneed to use the effective physical amplitude of many adja-
reduction of the effective radius of the hot spot and that thecent modes instead of the individual amplitudes, which are
relevant effective radius of the hot spot is the same as thewuch smaller, thus effectively reducing the resolution in the
effective radius that was defined for the IL. The secondmode spacéin some analogy to Haan’s saturation mdel
equality, (6b), relies on the fact that for high mode numbersfor Rayleigh—Taylor growth We propose that an adequate
only the inner clean radius contribute to ignitioRe(I ~ WaY o account for the combined effect of the modes is to

=0, §)=1—¢, and translates the imposed perturbation of anydefine the effective amplitudes of the given modes as

I, to a short wavelength perturbation with the same effective 0
ignition radius. The last equality6c), uses Levedahl and geﬁ(l,g(l))=m§c(l=0<>,ﬁ), (8
Lindl's formula?® to connect between the effective short cthv

wavelength perturbation and a 1D simulation with reducedyhere £(1,5) is the critical amplitude as given in Fig. 12
implosion velocity. andp is the ratio between the actual velocity of the target
Equation(6) gives an estimate for the effect of perturba- and the velocity that causes failure of the hot spot in the
tions on the yield of a general target, based only on 1Dsymmetric case.
simulations of the given target with an implosion velocity The yield of a multimode perturbation is thus given in
reduced byRuq(1,8%°, whereRg«(1,£) is given by the self- our model by Eq(6), whereRs=1— & and &y is given by
similar solutiong[Fig. 9a)]. We tested this formula against Egs.(7) and(8).
our complete 2D simulations results. The comparison is We tested our approach on the results of multimode
given in Fig. 13, which shows the yield as a function of thesimulations performed by the Laboratory for Laser Energet-
perturbation amplitude at peak compression for different perics (LLE) group for the direct drive ignition capsule of the
turbation mode numbers. It is seen that the model gives thBlIF.*> Mckenty, Goncharoet al. had shown that the target
right behavior and is in good agreement with the simulationgain could be well represented in terms of an effective am-
compared to what could ba priori expected form such a plitude defined as the route of a weighted sum-in-quadrature
simplified model. Still, it is important to note the two main of the amplitudes of the different modes at the end of the
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110 - " - spots. By letting the hot spot propagate into an outside per-
100 \ turbed density profile that decreases ag,r (1
a0l +Acosél), no new dimensional parameters are introduced
g0l to the problem and the behavior remains self-similar. The
a resulting 2D self-similar solutions were used to produce the
U,l 7or pR—T plane ILs for different final perturbation mode num-
o 60 ber and amplitude. The ILs obtained are higher than the IL of
5 50 the symmetric hot spot, reflecting the fact that perturbed hot
f—.’ 40} spots require a larggsR in order to ignite. The higher the

mode number is and the larger is its final amplitudes, the
higher is the IL.

[5
(=3

20r The 2D ILs were related to higher implosion velocities
10} (f needed for the ignition of perturbed hot spots, using the 1D
0 : ' ' Levendhal—Lindl high mode number limit scalifgwhich
5 10 15 20 i . ) o .
Effective Peak Compression Amplitude, &, (%) relates the perturbation amplitude in the limit of high mode
’ el

number with the required increase in implosion velocity
FIG. 14. The yield of a NIF direct drive target subjected to different multi- needed for ignition. Since for low mode numbers the bubbles
mode perturbationéRef. 42 as a function of the effective amplitude of the  still contribute to the ignition process the required increase in

perturbation at peak compressipBq. (7) assumingo =1.13 (Ref. 42]. ; ; P
Each point is indicated by the ratio between the sum-in-quadrature of th(ghe driver energy 1s lower compared to Levedahl and Lindl's

peak compression amplitudes of all modes WithL0 and the corresponding prediction for the limit of high mode number perturbatlons.
sum forl>=10. These results were compared with the full 2D numerical

simulations at low and high mode numbers, and a good

) ) ) ] ) agreement was found for the entire region of mode numbers.
acceleration phas®.Their best fit for these weights is 0.06 An interesting result and picture had emerge for mode num-

and 1 for the long I(<10) and short I(=10) wavelengths, pari=2: The 2D self-similar approach predicts that a small

respectively. This separation to long and short wavelengthe v hation may actually help the ignition because the long
and the larger effect of the short wavelength perturbations i ayelength makes it possible for the burn to take place in the
in accordance with the critical amplitude of the differenty, b pples independently with negligible interference from

modes, Fig. 12, which reach a plateau arolrdlO. The he oid spikes, enabling the ignition and burn to occur at
approach presented here, E8), actually uses these critical gomewhat lowepR. This prediction of the 2D self-similar

amplitudes to define the specific weighs of the differentgnision criteria had been verified by full 2D simulations,

modes. Note, however, that our approach is defined for thgynich indeed show a slight increase in the total yield due to
amplitudes at the time of stagnation rather than for the end mall perturbations of mode numble 2.

the acceleration phase. Using the spectrum of perturbation Using the self-similar ignition lines together with

amplitudes at the time of stagnation for thg same t.arget usedayedahl and Lindl's scaling, we proposed a model for pre-
|n.Ref. 42,. we have calc_:ulated the effective amplltude of Adicting the gain of a general target with a single mode per-
mixed region at stagnation by Eqe’) and (8). Figure 14 v iation based only on 1D simulations with an appropriate
shows the yield of the target, subjected to different multi-jecrease in the implosion velocity. The model shows good
mode perturbations, as a function of the effective amplitude, eement with full numerical simulations both for high and

at the time of stagnation. It is seen that the yield indeed,; |ow mode numbers. An extension of this single mode
depends, to a good approximation, on this effective ampli-

X ain-perturbation model to the more general case of multi-
tude alone. Note that the model holds for a wide range oﬁ1

X i e . ode spectra is suggested, by defining an effective mix re-
pertu_rbat_lon spectrums Wlth a large ve_1r|ab|I|ty in the relatlvegion thickness which weights each mode according to its
contribution of low and high perturbation modes.

single mode gain-perturbation amplitude curve. With this ef-

fective final amplitude, the gain of a given target subjected to

V. CONCLUSIONS a given multimode perturbation spectra, is given. Good
Ignition conditions for perturbed hot spots were investi-agreement to results of NIF direct drive full 2D multi-mode

gated using both full 2D numerical simulations and a modekimulations is obtained.

based on new 2D self-similar solutions. Using 2D numerical
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