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Inertial confinement fusion ignition criteria, critical profiles, and burn wave
propagation using self-similar solutions

Roy Kishony,®® Eli Waxman,® and Dov Shvarts
Physics Department, Nuclear Research Center—Negev, P.O. Box 9001, Beer-Sheva, Israel

(Received 19 August 1996; accepted 14 January 1997

The ignition conditions, under which a thermonuclear burn wave propagates from an initial hot spot,
and the characteristics of the propagating burn wave are investigated using a set of self-similar
solutions. Although the self-similar solutions exist only for external density profile that decreases as
pout = I 1, they are shown to provide natural ignition criteria and critical profiles for more general
density profiles. The concept of working lin@&/Ls), attractors of trajectories in theR — T plane

of propagating burn waves, is introduced for density profilgs > r ~“. The WLs are found to be

close and almost parallel to the ignition ligk.). The distance of the WLs from the IL is given
analytically and shown to depend on all the physical processes involved. The spatial profiles of a
burn wave propagating along the WLs are shown to be closely related to the self-similar critical
profiles. © 1997 American Institute of Physid$$1070-664X97)02604-9

I. INTRODUCTION temperature, assuming an isobaric and static DT. For a speci-

The ignition of a central hot spot in deuterium—tritium f|ed wall temperature, the equatiar) =JT(r,t)/9t=0 was

(DT) fuel, which generates a thermonuclear burn wave thakteratively _solved on a discrete spatial grid. Three indepen-
propagates through the rest of the DT fuel, is crucial fOrdent solutions were found, two of them stable and one un-

achieving high gains in inertial confinement fusiticF).: stable. The critical profile was defined as the unstable solu-

Hot spot ignition and burn propagation are expected to b&©™ To(rj), for which a positive eigenvalue of the matrix
demonstrated in the National Ignition FacilftyThe limited ~ Mij=dT(r)/dT(r;)|r—7, exists. These critical profiles, how-
energy sourcé~2 MJ) is expected to provide relatively mar- ever, cannot be applied to the problem of hot spot ignition, as
ginal hot spot ignition with relatively small areal densitfes, they do not account for the hydrodynamic expansion and for
hence motivating detailed investigation of the conditions unthe propagation of the thermonuclear burn wave into the cold
der which the hot spot ignites and the burn wave propagatesnaterial.
The ignition conditions are often determined using simplified  In the present work a different approach for determining
zero-dimensional(0-D), Widner-type models of the hot the ignition criteria is taken. A set of self-similar solutions,
spot®™® These models describe the hot spot by a few charthe existence of which was first pointed out by Neudachin
acteristic variables: The radil densityp, and temperature and Sasorov*'2is shown to provide both the ignition crite-
T. Using these variables, one can express the energy gaiia and the critical profiles. Neudachin and Sasorov showed
and loss rates of the hot spot by the different physical mechahat for an outside density profie,~=sr* and fors higher
nisms: Thea-particle transport, bremsstrahlung losses, electhan a certain critical valus,,, a self-similar solution that
tron heat conduction, and hydrodynamic work. The ignitionincludes all the relevant physical mechanisms exstéThe
line (IL) is then defined as the line in theR—T plane on  critical value s, was used to determine the minimupR
which the energy loss and gain rates inside the hot spot aligeeded for a prolonged propagation of thermonuclear burn in
balanced. density profiles that decrease similarly ta .1Analytic (re-
However, the energy deposition rates, and therefore thgycing the problem of numerically solving the partial differ-
IL, depend not only on the characteristaverageglvariables  ential equations to the much easier problem of numerically
p andT, but also on the one-dimensiondt-D) spatial pro-  solving the self-similar ordinary differential equatioself-
files of these variables inside the hot sptiThese profiles, gimilar solutions were obtained for the simple case that in-
called the critical profiles, are provided in the zero-¢yges only hydrodynamic and local deposition of the
dimensional (0-D) models using additional assumptions. ., narticles, and it was shown that the distinction between
Usually the profiles n these models are assumed 10 be SP&apje and unstable solutions, proposed by Kirkpaffid,
tially homogeneous; or are derived by simple consider-  gjiq also for the set of self-similar solutioh&Solutions for
ations. qu example, the temperature pr_oflle can be deriveg o more general problem, including electron heat conduc-
by assuming a constant heat current inside the hot®spot. tion, a-particle transport and radiation losses, were obtained

DT tK'rkpfft.rli.Ck catlcglate?] the fr't'cil prg{ﬂles for ? S:na"” only by means of numerical simulatiofsAs a result, the
arget fifing a static spherical cavity with a constant wall  ,staple solutions, which are important for defining the igni-

tion conditions, were not obtained for the general case.

2Electronic mail: royk@menix.bgu.ac.il In the present work the complete set of self-similar so-

YAlso at: The Raymond and Beverly Sackler Faculty of Exact Science,mtions which includes both the stable and unstable solu-
School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel. . ! . .

9Present address: Institute for Advance Studies, Princeton, New Jerseti)ons! is derived and used to define the IL for the general case

08540. where all physical processes are included. It will be shown
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that although the self-similar solutions exist only for an out-1l. THE IGNITION LINE AND THE SELF-SIMILAR
side density profile that decreases ras, they provide a SOLUTION
natural global ignition condition that is applicable for more

. , ) . . We shall first present the commonly used 0-D Widner-
general density profiles, including the commonly studied . . .
: type model to describe the scaling laws of the different
case of constant density.

Following Kirkpatrick. we also use the unstable solu- physical mechanisms involved. The conditions for the exis-
i 0 d f_g th b i ' teria. H . tence of a self-similar solution, which includes all the physi-
lons to define the ignition criteria. HOWEVET, SINCE WE ar€q, e hanisms, will be derived based on these scaling laws.

also interested in the asymptotic propagation of the bUrfyq, “the self.similar IL will be constructed and compared
wave after ignition, the stable solutions will also be studiedwi,[h t,he IL obtained by the Widner-type model
and defined as part of the IL. It will be shown that after '

ignition the hot spot trajectories in theR—T plane are at- A. Widner-type 0-D model

tracted to lines, called the working lin€8VLs), which are Several physical processes are involved in the thermo-

close and almost parallel to the stable part of the IL. ThUSnudear burn propagation: Electron heat Conducti@.m),art_

the stable part of the self-similar solution IL can be used as &tle transport, hydrodynamic motion, and radiation losses.

generator for the working conditions. For simplicity, in the present model local thermal equilib-
The self-similar approach to the investigation of thermo-rium, i.e., equal electron and ion temperatures, is assumed,

nuclear burn wave propagation has been previously proposegdiation is accounted for only by bremsstrahlung losses, and

by Gus'kov, Krokhin, and RozandV. However, since the fuel depletion is neglected. Relaxing these assumptions does

authors were not aware of the possibility of including all thenot change the conclusions significantly. Using the 0-D ap-

relevant physical mechanisms in a single self-similar soluproach, the energy deposition rates inside the hot spot by the

tion for the case of am~* density profile, only degenerate different physical mechanisms can be written(&s use the

self-similar solutions were found. Neglecting the radiationnotation of Ref. 9

losses, including eithet-particle transport or electron heat 2

conduction as the transport mechanism, and assuming either WF:XFéaV<2L) (av),

constant pressure or constant density inside the hot spot, four m

different .degengrate self-similar .solutions were obtained. W,= xof(pR,T)W,

The spatial profiles of these solutions, needed to define the

coefficients of the scaling laws, were not derived in this work ~ Wr=XrAVp°TY?, 1)

;md were assumed_to be constant. The anaI)_/S|s pre_sented Wiy= xwP- SCs,

ere shows that neither the isobaric nor the isochoric as-
sumptions are valid in the region of thdR—T plane where B 5o 1
the proposed degenerate solutions exist. Therefore, the de- We=Xxckol R S,

generate solutions of Gus’kov, Krokhin, and Rozanov do not hereW. is th | fusi duced in the h
describe self-consistently the propagation of the thermoWNereWe Is the total fusion power produced in the hot spot,

nuclear burn wave. ﬁn?Wa ,tvt\)/R , WWt,_ alde\t/)C are t?e r(]alnergyhlo(_;,s :jates frpm th(la(
The main purpose of the present work is to study the ot Spot bya-particies, bremssfraniung, hydrodynamic wor
. . . . _and electron heat conduction, respectively. The fraction of
relation between the recently derived complete self-similar . : " )

) ) ... the total a-particles energy released in fusion reactions that
solutions to the burn wave propagation problem, the ignition

o o : . . he h is a functi f the h -
criteria, the critical profiles, and the hot spot trajectories mescapes the hot spdt,,, is @ function of the hot spot tem

i . N . > "peratureT and its areal densitpR.}* V and S are the hot
the pR—T plane. The detailed derivation of the self-similar spot volume, 4R¥3, and area, 4R?, respectively. The

solution will be presented and discussed in a separate fort ressure inside the hot spot i®=2Cy,pT/3, where

coming .pu.blication. [n the _next section ar_ld in the A.ppendix,CU:?,kB/mi and the expansion velocity of the hot spot is
a description and discussion of the main properties of th‘?aken to be proportional to the sound speed
compl_ete self_—S|m|Iar solutions and theT dlf_ferences frc_>r_n theCS=(2kBT/mi)1’2. In general, if one wishes to study the hot
analytic solution of Refs. 11 and 12 is givéthe explicit  no¢ formation stage, this velocity should be replaced with an
spatial profiles of the self-similar solutions are presenteqncoming initial negative velocity, which is changing ac-
later in Sec. 1. Also introduced in Sec. Il is the IL corre- cording to a simple force law such ad(pvp)/dtocps_
sponding to the self-similar solutions compared with that dejowever, since in the present work we are interested in de-
rived from a Simple 0-D model. Section Ill deals with the Scribing 0n|y the burn wave propagation Stage, the assump-
propagation of the thermonuclear burn wave after ignitiontjon of expansion with sound speed velocity is satisfactiry
The WLs, defined as the attractors of the hot spot trajectoriegan easily be shown that the above force law leads to this
in the pR—T plane after ignition, are shown to be relatively pehavioj. The values of the dimensional constasts m;,
close and almost parallel to the stable part of the IL. Thea,, «,, andkg are defined similar to Refs. 1 and 9, except
distance of the WLs from the IL in theR—T plane is given  for the value ofx, which was taken from Ref. 13 and differs
analytically in the 0-D model and shown to depend on all thefrom that of Ref. 1 by a factor of 4 due to the different values
physical processes involved. Section IV compares the seliassumed for the Coulomb logarith@im A=8 is assumed in
similar solution profiles and the profiles of a full numerical Ref. 13 and IA=2 is assumed in Ref)1Here,xg, Xa: Xr >
simulation along the IL and along the WLs. Xxw. and xc are dimensionless coefficients of the order of
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losses are dominant, while at intermediate temperature, 6
keV<T<20 keV, hydrodynamic expansion losses are domi-
nant and at high temperaturé6>30 keV, both hydrody-
namic expansion and the-particle transport are important
and electron heat conduction is somewhat less important.
With the higher value ok, assumed in Ref. 1, the relative
importance of the electron heat conduction becomes larger
and is about a factor of 2 higher than shown in Fig. 2. But, it
is still somewhat lower than the hydrodynamic expansion
and thea-particle transport contributions.
The convergence diV, to a constant value at high tem-
e peratures, seen in Fig. 2, was explained in Refs. 5 and 15, as
% 5 10 15 20 25 30 35 40 45 50 a self-regulation of the radius of the hot spot to the range of
T (keV) the a-particles. A small hot spot radius relative to the
a-particle slowing down range causes a large portion of the
FIG. 1. The ignition line(IL) in the pR—T plane. The 0-D IL is shown  qg-particles energy be deposited outside the spot, leading to
together with the sglf-similar IL fc.)r't'he mean density definitigR of Eq. an increased hot spot radius, which then decreases the por-
(6b) and for the optical depth definitiof§pdr of Eq. (6a). . .
tion of the a-particles energy that escapes from the hot spot.
This negative feedback in the-particles energy deposition
within the hot spot, together with the fact that the time evo-
one, which depend on the assumed critical profiles. Assumiution of the hot spot is along trajectories that are close and
ing spatially homogeneous profiles one obtaipg=2"  parallel to the IL, as will be shown in the next section, ex-
X£=Xo=xr=1.° and assuming constant heat current oneplain the convergence ofV, to a constant value at high

1.5

p R (g/cm?)

0.5¢

obtainsyc=4/7° temperatures along the IL, seen in Fig. 2. Similar arguments
Given the energy deposition rates inside the hot spot, Echold for both the electron heat conduction and the PdV
(1), the IL is defined by the energy balance equation: losses.
WQ+WR+WW+WC:11 (2)
whereW, = W,/W, is the power loss due to thiéh process B. 1-D self-similar solution
(i=«a,R,W,C) normalized to the total fusion power. The IL, In order to find the critical profiles at ignition we shall
resulting from Eq.(2), is represented by the dashed line in now examine the conditions under which a self-similar solu-
Fig. 1. tion to the propagating burn wave exists. These conditions

The relative importance of the different energy losswere obtained by Neudachin and Sasotbwut are dis-
mechanisms is shown in Fig. 2, where the normalized energgussed here from a different point of view based on the 0-D
loss powers are plotted as a function of the temperature alorgnalysis presented in the previous section. It will also be
the IL. It is seen that at low temperatufiess6 keV, radiation  shown that under the conditions that such a self-similar so-

lution exists, the energy deposition rates inside the hot spot

are balanced so that the profiles of that solution are indeed

the critical profiles.
1 : ‘ ‘ ‘ ' Self-similar solutions exist in general if no characteristic
time or length exists in the probletfiln order to study when
one can expect a self-similar thermonuclear burn wave to
exist, we start by noticing that the four physical mechanisms
described by Eq(1) depend differently on the hot spot pa-
rameters, i.e., its radiuR, densityp, and temperatur&. In
order to avoid the appearance of any characteristic time or
length in the solution, the ratios of the various energy loss
and gain mechanisms must be time independent. Otherwise,
the time, in which the importance of two such mechanism is
equal, for example, would be a characteristic time. As seen
from Eq. (1) the ratios between the energy loss and gain rates
are functions of the hot spot temperatdrend areal density
pR, but not ofp andR independentlythe weak logarithmic-
dependence of the Coulomb logarithmAnon p and T is
neglectegl In order not to produce new time or length scales
FIG. 2. Hot spot energy loss rates by igarticle heatinda), bremsstrah- In th(’_} problem it is necesse_lry_ that the_ temperature and _areal
lung losses(Rad, electron heat conduction lossé8ond, and hydrody-  density scales of the self-similar solution will not vary with
namic work(PdV) as a function of the temperature along the ignition line time:

(thick lines and along thew=0 working line (thin lines using the 0-D
models. The partial loss rates are normalized to the total loss rate. T=const, pR=const. 3)

S o o
S » o]

Normalized Losses Powers
o
o
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Appendix. pR=| pdr. (6a)
Requirement$3) can only be satisfied for boundary con-

ditions where the temperature and density outside the hdthe second definition is the product of the mean density of

For a more formal derivation of these requirements see the __ J'R

0

spot are given by the hot spot and its radiugR, which is a natural definition
for the density profile of the self-similar solutions since,
Tou=const, pou=sr—1, (4)  from mass conservation, it can be shown to be proportional
to s:
wheres is a constant having the dimensions of an areal den- 1 (R 3
sity. Boundary conditions that are different from Ee) PR= _J pdnr?dr|-R==s. (6b)
would not allow self-similarity. For example, if, is not Vo 2

constant, the time in whicfT,,, and T become equal will Other definitions can also be used for bathand pR and
serve as a characteristic time. The self-similar solution isthere is noa priori superior definition, since for any of the

defined by the two bounda}ry conditions of E4), anq coN- jifferent physical processes, differepiR and T definitions
sequently we shall deal with a two parameter fantflyand are more appropriate. For example, the optical dep

Tou) OF self-similar solutions. We shall actually see that for definition is more naturally adequate for theparticle trans-

eact\k;vpalr ?f? andTE,UBIelther dno se:f-sllmllgrtsﬂu;_lo_n extlits, port, but the fusion rate per unit mass is better described by
or two solutions(stable and unstableexist, defining the the mean density definitio(6b). In the following we shall

stable and unstable parts of the IL. The self-similar SOIUtior}nainIy use thepR definition (6b) which is more natural for
profiles for different values of are presented and discussedthe profiles of the self-similar solutions, but the more com-

n SlecthV(sbee F'g' 6 b?lO\)V h d that th | mon definition of(6a) gives similar results.
n the above derivation we have assumed that the VeIoC- e geif gimilar ILs that correspond to the two areal

ity of the materigl putside the hot spot. is ZE{.[Q’”‘:O)' Ac- densities definitiong6a) and(6b) with the mean temperature
tually, the self-similar solution also exists with any constantdefinition (5) are shown in Fig. 1 for the case, =2 keV
. ut .

boundary velocity(u,,~=cons}. The constant temperature ILs of other values off ., in the relevant rang@ ,,<6 keV,

scale, defin_ed in Eq3), means constant _sound speed andnot shown in the figure, are very close to thg,=2 keV line
thus, _tp ay0|d the appearance Of_ a new fime scale, all Otheit the high temperature regidre T, and are slightly dif-
velocities in the self-similar solution must also be constante, .+ ot the low temperature region, where the smaligy
Tthlst|mplles _constalnt _t:pundary velociy, as well as con- is, the higher is its IL. It is seen that the two definitionp&t
stant expansion velocity. result in relatively close lines. The 0-D IL is also relatively

. Turning back to the ignition cond|t|ons_, it should be no- close to the self-similar ILs. Notice that this good correspon-
ticed that the constant temperature requirement of (B). dence between the 0-D IL and the self-similar IL is a conse-

which was imposed by the self-similar assumptions, impliesquence of the right choice of the coefficients of Eq(1) for
dT/dt=0, results in balanced energy deposition rates inSid‘f’he 0-D model. However, this choice is only an approxima-

the hot spot in the self-similar solutions. Thus, the IL. may beti n since it does not account for the different spatial distri-

defined t_)ased on th_ese solu_tions, and the spatial profiles Bltions inside the hot spot which may change substantially at
the solutions are critical profiles. Each of the two parameteicc. .ot regions of theR—T plane

family of self-similar solutions(s, T, can be mapped to a The self-similar IL, on the other hand, self-consistently

point in thhepR—TTpIane.dThep (tjrsledset C.);; self—sl!mllgr sr(])lu- includes the correct 1-D spatial distribution. A striking ex-
tl?ns W_llfh_al_glve_n t(ﬁt ‘TE fva;]let etscrlltﬁs a’ine in tt 6.1; ample is the hydrodynamic work term. Different descriptions
plane. 1his ine s the or not Spots with a given outSIte ¢, 1he pgv term have been proposed for the 0-D models,

tempera_tureTout. When looking for solutions WithTO“.‘<<.6 depending on whether or not a shock wave is propagating
keV, which is the relevant parameter range for defining an,p.,4 of the conduction frof:° The self-similar solution

ICF IL, the Il depends only weakly ofi,,,. Even though the self-consistently includes hydrodynamics and shocks to-

Fi ; idar -1
self-similar IL is found by considering the case gf,r -, gether with the other physical mechanisms, and therefore

it will be sholv;n m_tthe n?i(t sections to provide an IL for naturally describes the transition between a shock wave front
more general densily proliies. and a conduction front.

The actual mapping of the self_—similar solutio-ns: .profiles A self-similar thermonuclear burn wave in an outside
to thepR—-T pla.ne can be done using various c_ieflnltlons fordensity profile which decreases ag,r~* exists only for
the characteristic temperature and areal density. We Choo?/%lues ofs which are higher than a certain critical valsg.

to defineT as the mass averaged temperature of the hot SpoFhis critical value is about 0.33 g/dnas can be deduced

1 (R from Fig. 1. The value decreases to 0.23 ¢famhen local
T=— J Tp4mr? dr, (5) deposition of thea-particles is assumed and decreases
M Jo slightly further to 0.22 g/crfy when the bremsstrahlung ra-
diation is also neglected. Using numerical simulations, Neu-
whereM = [Rp47r? dr is the total hot spot mass. dachin and Sasorov obtaineg,=0.43 g/cn? for the case
For the areal density we shall consider two definitions.which includes all the physical mechanisfisThis value is
The first definition is the commonly used optical depfhof  about 25% higher than our analytic result, 0.33 dfcks
the hot spot: indicated by Neudachin and Sasorov, humerical simulations
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may indeed give higher values fag, since the attractive not satisfy the self-similar requireme(8) can be obtained.
region of the self-similar solution becomes very small whenGus’kov, Krokhin, and Rozand¥ have proposed a self-
s—S.. A similar difference of about 25%, in the critical similar solution of that kind for the propagating thermo-
value ofs between numerical simulations and analytic solu-nuclear burn wave problem. Neglecting both the radiation
tions, was obtained by Neudachin and Sasorov also for thivsseSWgr=0) and either thex-particle transportw,=0) or
case of local deposition of the-particles. In addition, the the electron heat conductioiz=0), only three of the five
models and coefficients used by Neudachin and Sasorov fehysical mechanisms described (it were taken into ac-
describe the various physical processes are somewhat diffegount. Thus, only two ratios of energy rates had to be kept
ent from those used by us, and may lead to some additionaonstant. A third, non-self-similar equation was added by
difference in the critical value d. assuming that the hydrodynamic propagation is either much
The ILs of Fig. 1 consist of two branches that will slower or much faster than the conduction front propagation.
be referred to as the left.) and the right(R) branch. Con- Respectively, it was assumed that either the density is con-
sidering the change GF as a function ofT we note that Stant(p=cons}, or that the front moves with a velocity of a

, — ) —  shock waveRx(pT)*? and a constant pressure is assumed
for fixed pR, T is zero for the two temperalure$,  poping the shockP=cons). The three equations were then

andTg (T, <Tg) onthe IL, and is positive fol, <T<Tgr.  goyed for the scaleB(t), p(t), andR(t). Although the spa-
It follows that(9T/(9T|_T—L >0 andaT/aT|T_R<0,_which means tial profiles of the density and pressure could be derived,
that the solution aff, is unstable while thés solution is  they were not obtained in that work, and were rather as-
stable. As will be shown in the next section, the fact that thesumed to be constant. Analyzing the various mechanisms
right branch is stable while the left branch is unstable causeBarticipating in the hot spot evolution, Fig. 2, it is apparent
the hot spot trajectories to diverge from that left unstablethat the radiation losses are the dominant mechanism and
branch and to be attracted to the right stable branch. cannot be neglected at the low temperature region, while at
It is seen from Fig. 2 that at the left branch, where thethe high temperature region hydrodynamics becomes impor-
temperature is .|.9W’ the radiation IOSSWFO and the hydro- tant. It will also be shown that neither the aSSUmption of
dynamic work V) dominate the transport and conduction constant density nor the constant pressure assumption hold at
mechanisms \{V,,+W¢), while at the high temperatures of these regions. Therefore, the degenerate self-similar solu-
the right branch the situation is reversed. Accordingly, theions of Gus'kov, Krokhin, and Rozanbvdo not describe
stable solutions of the right branch are characterized by §elf-consistently the ignition and the burn wave propagation
propagating thermonuclear burn wave in which a conductio any of the IL regions in theR—T plane. We shall return
wave, based om-particle transport and electron heat con-t0 this comparison in the next section.
duction, is moving faster and ahead of a retarded shock wave

(see also the discussion of Fig. 6 bejoun the unstable

solutions, however, the shock wave moves ahead of the cofll: WORKING LINES: ATTRACTORS OF HOT SPOT

duction wave. That picture, in which the burn wave structure! RAJECTORIES IN THE pR—T PLANE

changes between an unstable detonation front and a stable A simple 0-D model that is based on the energy deposi-
Conduction front, COUId not been Obtained in Refs. 11 and 1%0n rates given in Eq(l) is used to investigate the traiecto_
since the set which includes both the stable and the unstabifss of hot spots in thgR—T plane. It will be shown that
solutions was found only for the degenerate case which doegter ignition the trajectories of all hot spots are attracted to
not include the electron heat conduction and thparticle  |ines, defined as the working line&VLs), which will be
transport mechanisms and therefore always has a detonatigfen analytically in terms of their distance from the IL. This
front structure. attraction of the hot spot trajectories to WLs, which reflects
Kirkpatrick defined the ignition conditions by the un- the stability of the right branch of the self-similar IL, will
stable solutions of his critical profile equations. These unqlso be demonstrated using a full 1-D numerical simulation.
stable solutions correspond to the left branch of the self- ) _
similar IL. Two other, stable, solutions with temperatures” 0-D model for hot spot trajectories
above and below the temperature of the unstable solution In the 0-D model the temperature of the hot spot changes
were also found by Kirkpatrick. The stable solution with thedue to the energy deposited inside the hot sp'gt,=W;
higher temperature corresponds to the right branch of the-W,—W.—Wg—W,,. Due to the short range of the
self-similar IL. The other stable solution corresponds to aa-particles and of the heat conducting electrons in the cold
class of solution, not investigated in the present work, whoséuel outside the hot spot, the energy, =W ,+ W, carried
hot spot temperature is of the order of the outside temperaby these transport mechanisms outside the hot spot is as-
ture T,:. At high enough outside temperature the three sosumed to heat up a thin layer of the cold fuel outside the hot
lutions coincide and a Wheeler ignition mode occlirs. spot, from its initial temperature up to the hot spot tempera-
If only three of the five physical mechanisms describedture. The radiation losse®/r are assumed in the present
in Eq. (1) are taken into account, the self-similar require-model to escape out of the entire DT pellet. The hydrody-
ments, Eqg.(3), and therefore the boundary conditions, Eq.namic workW,, is assumed to decrease the hot spot internal
(4), can be relaxed. In this case, the requirement for constamnergy as it transforms it into kinetic energy. The time evo-
ratios between the three |af¢;’s leads only to two equations lution of the hot spot temperatur€, massM=p-V, and
for the three unknown$T, p, andR) and solutions that do radiusR can thus be written, similar to Refs. 8 and 15, as
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FIG. 3. The ignition line, hot spot trajectories, and working lines ingRe- T plane as described by the 0-D model. Trajectories of hot spots with different
initial conditions and with the boundary conditiofig,=2 keV andp,,=r~“ for o=—1, 0, 0.9, 1.5, are show(thin lines. Also shown are the working lines
for those boundary conditiorhick lines. The marginal trajectories, which define the SCIL, are marked with for =0, 0.9.

T—\W. spot. Therefore, the 0-D IL does not depend on the outside
CyMT=W,,, ! :
, condition parameters andT,,; and can be viewed as a 0-D
CuT—=TodM =Wy, (7) global IL. Note also that for the hot spot trajectories with
o w>1 the areal densitgR decreases with time as their radius
SpouR=M. R increases and therefore no sustained thermonuclear burn

Since the model described by E{) takes into account the wave can exist in a density profile that is decreasing faster
propagation of the burn wave into the initially cold fuel, the than 1f.
outside conditiong,,; and T,;, which define the mass and As is seen from Fig. 3, ignition is possible also from
internal energy of the cold fuel that is overtaken by the burrpoints under the IL. These types of trajectories, in which the
wave, should be specified. Motivated by the self-similar sohot spot temperature initially decreases while its areal den-
lution, we take the conditions outside the hot spot to besity increases, and only then the IL is crossed and the tem-
Pou=SR “ andT,,~=const. perature starts to increase, is called sub-critical ignRion.
The model parameters are therefore the hot spot’s initial he sub-critical ignition lingSCIL) is defined by the most
conditions forpR and T and the outside condition param- marginal ignition trajectory. The marginal trajectories for
etersw andT,,,. The coefficiens is not a free parameter and ©=0 and foro=0.9 are shown and marked in Fig. 3. It can
is defined by the requirememi=1N[§sr “47r?dr at be seen that, unlike the IL, the SCIL does depend on the
t=0. conditions outside the hot spot. Note also the divergence of
The temporal evolution of the hot spot in the 0-D modelthe marginal trajectories near the left branch of the IL, which
is demonstrated in Fig. 3, presenting trajectories in thds in accordance with the instability of that branch discussed
pR—T plane for the outside conditions=—1, 0, 0.9, 1.5, in Sec. Il. In the present paper we focus on the IL, and the
andT,,=2 keV (as pointed out before, very similar results SCIL is not discussed further.
are obtained for other outside temperatures as long as It is apparent from Fig. 3 that for any given all hot
T.u<<T). Shown in Fig. 3 are the different hot spot trajecto- Spot trajectories that ignite are attracted to an asymptotic
ries and the 0-D IL which is defined by E@), i.e., byT=0. trajectory. These asymptotic trajectories can be described
Note that the trajectories of all the hot spots that ignite cros@nalytically by writing the 0-D model equatior§) as a
the IL perpendicular to the temperature axis, i.e., With0,  trajectory equation:
regardless of their outside and initial conditions. This results
from the fact that in the 0-D model the coefficientsin Eq. dT  h(pR,T)
(1) are fixed, independent of the conditions outside the hot d(pR)  ¢(w) ’

®
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where
T-T
PR

Win
Wout'

out

h(pR,T)=

and

¢(w):3_—w-

The variablepR at a given temperatur€ can be replaced
with the new variabler=(pR—H, )/H, , whereH, is de-
fined as the IL areal density for the temperatdreand is
given by the implicit equatiom(H,_,T)=0. Expandingh to
first order about the IL poinfH, ,T), h(pR,T) = 7H, ¢h/
d(pR)|,r=n, - EQ. (8) can be written as

THL %:Tofﬁ(w)_ﬂ ©)
where
To:(HlL _&—ih )l
pR=H,_
. -1
o~ pR=HIL(T_T0ut)

From Eq.(9) it follows that 7— 7y¢(w), provided thatr, does
not vary significantly withH, and that70 whenH,_is
increasing with time or that<O whenH, is decreasing
(i.e., above the IL foro<l and below the IL foro>1).
Hence, for a giverT,; all hot spot trajectories that ignite for
w<1, or the trajectories that are below the IL for-1, are

attracted to an asymptotic trajectory, regardless of their in

tial conditions, which we shall call a working lin&VL) for
thesew andT,,. The WLs are thus defined by

Hwi(T,0)=H, (T)[1+ 7od(w)]. (10)
The WLs ofw=-1, 0, 0.9, 1.5, and =2 keV are shown

in Fig. 3 by the thick lines and are seen to be indeed th
attractors of the corresponding hot spot trajectories for these ¢

w's. For w=1, the self-similar solution line is both the IL and
the WL.

The distancey¢(w) of the WLs from the IL is described
in Fig. 4. The figure shows both, as a function of the
temperature along the stable right branch of the IL &)
as a function otw. At the left, unstable, branch of the g is

negative.ry, which is positive on the right branch, diverges
to infinity at the minimum of the IL, while at temperatures

above 25 keVr, is approximately given by,=0.4.

In order to investigate the relative importance of the dif-

ferent physical mechanisms in determining the valueof
we can writery [Eq. (9) assumingTl,,<T] as
We+W,,
o e ~ ~ ~ I
O W+ (7/2— M)W+ (1/2— m)Wi + (3/2— m) Wiy
11

wherem=4dIn(ov)/dIn T andn=4dInf_/dInT.
The denominator of Eq11) resembles the ignition con-

0 10 20 40 50 60

30
T (keV)

FIG. 4. The distanceyd(w) of the working lines from the ignition line,
obtained by the 0-D model, is describeg.is shown as a function of the
temperature along the ignition linew) as a function ofw is shown in the

small figure.

from the difference in the temperature dependence of each
mechanism. Using the values for tN&’s given in Fig. 2,

and the fact thatn ranges from 1 at =25 keV to 0 afT >50

keV andn~3/2 over all the temperature rantfeit can be
seen that only the radiation term (¥2)Wy can be ne-
glected in Eq.(11). Although W, is relatively small com-
pared tow, andW,,, the high 7/2 coefficient of the electron
heat conduction term due to its high nonlinearity makes it
comparable to thex-particle transport and to the hydrody-
namic work terms. With the higher value gf, assumed in
Ref. 1, the electron heat conduction becomes the dominant

ilerm in determining the distance of the WLs from the IL.

The relative importance of the different energy loss
mechanisms along the WL of the=0 case is shown in Fig.

2. The values are seen to be very similar to those on the IL.
Of course, on the WL the sum of all the energy loss mecha-
nisms W,+Wg+Wy+W.), by which the values in the
figure_are normalized, is less than the fusion power, i.e.,
+Wg+Wyy+We<1 on the WL.

It should be noticed that when only two of the energy
mechanisms are taken into account and assuming that they
both can be approximated as power laws of the temperature,
the distancer, becomes identically constant, i.e., the WLs
are exactly parallel to the IL. This was indicated by Lhdl
who showed that the hot spot trajectories are attracted to a
line parallel to the IL when only hydrodynamic compression
(W< pTRR?) and electron heat conductioWgxRT"?)

are considered. In this case from,/W-=const one obtains
aTx(pR)?" trajectory.

Rozanov'$® self-similar solution to the burn wave
trajectory takes into account three mechanisms: Fusion
(WexR3p2T™), hydrodynamics Wy, pTRR?), and either
electron heat conductio\{¢ RT"?) or a-particle transport
(f,<T*%pR). Although three mechanisms are included, the
solutions can still be shown to be exactly parallel to the IL,
which is a consequence of the hydrodynamic term having the
same scaling laws as the rate of the hot spot internal energy
changed(TpR®)/dt. The IL to which Rozanov's solutions

dition (2), except for the different coefficients, which result are parallel is a degenerate IL, which is defined only by the
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2.5
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FIG. 5. The self-similar ignition line and the hot spot trajectories of a full 1-D simulation are shown,iTRthéTpIane. The different trajectories correspond
to different initial conditions and to the boundary conditidng=2 keV andp,,=r * for v=—1, 0, 0.9, 1.5.

mechanisms that were taken into account and is thereforéhe trajectories for a givew converge to an asymptotic WL
different from the nondegenerate IL that includes all theand the WLs of the differend's converge, asv—1, to the
physical mechanisms. It was found, however, that the slopself-similar IL.

of this degenerate IL is close to the slope of the nondegen- This convergence of the WLs to the self-similar IL can
erate IL at high temperatures where the ratios of the varioube understood based on the asymptotic self-similar assump-

mechanisms are constaisee Fig. 2 tion. The WLs were defined to be the attractors of the hot
spot trajectories in thepR—T plane. According to the
B. Trajectories in a 1-D simulation asymptotic self-similar assumption, a self-similar solution is

We shall tull 1-D ical simulati the asymptotic solution to which all other solutions, regard-
e shall now use a full 1-D numerical simulation 10 oo ot their initial conditions, converd@.Thus, the self-

show t.hatltge 0'3 ﬁl]cttu'redof Z'gthg rerl?al'nsllquallt;alttl'vely :.hesimilar solution line, described in Sec. Il, is the attractor of
same in -th, {ITf ; ml get . etsg -similar solutions fiNGy,e trajectories of the=1 case and therefore can be thought
serves as the T for the 1-D trajectories. of as thew=1 WL. The problem of finding the global IL,

The simulation solves the partial differential equations_ . . i o
. . i S which is applicable for general boundary conditions, can thus
given in the Appendi{Eqgs.(A1)—~(A3)], which include hy- "y o 1 the problem of finding the WL for the=1

drodynamics, one-group diffusion at-particles, electron . . . . .
i case only, for which the self-similar solution exists. This
heat conduction, and bremsstrahlung losses. Equal electran

and ion temperatures are assumed for simplicity and the fué:lonc!usmn is applicable when accounting for. additional
depletion is neglected. physical processes, such as a more complgarticle and

radiation transport, fuel depletion, and different electron and

The initial conditions used within the hot spot are of a. ¢ i Si h Iso d d onl
homogeneous and static hot spot with constant temperatufign EMperatures. SInce tese processes aiso depend only on
andpR, a self-similar solution exists for the same bound-

and density profiles. Different initial hot spot temperature diti Taking i h |

and areal density are considered. The conditions outside ey con ftion. Taking m_to account these more compiex

hot spot are taken, as in the 0-D model, toThg=2 keV physical processes, the right stable branch of the self-similar

and p,,=r ~® with different »'s ' IL can be obtained, as was done in Ref. 12, by running a
ou .

Figure 5 shows the 1-D hot spot trajectories in fie numerical simulation for the case of a hot spot propagating
~T plane, defined by Eqs5) and (6b), for different initial 1N @ density profile withe close to 1(«~0.9 is usually
and boundary conditions. Also shown is the self-similar L. Satisfactory, for which the WL is very close to the self-
Qualitatively the results of the 1-D mod@ig. 5 are similar ~ Similar IL. o S
in nature to the results of the 0-D mod@ig. 3 with the If the self-similar solution line is the IL then all hot

self-similar solutions line as the IL. Similar to the 0-D case,spot’s trajectories should pass this line Witk-0. It is seen
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to the IL and to converge to the IL as—1. The relative
importance of the different physical-mechanisms along the
WLs was shown to be very similar to their relative impor-
tance along the IL. Motivated by this close relation between
the WLs and the self-similar IL, we shall now compare their
spatial profiles and show that one can learn about the profiles
of the WLs from the critical profiles of the IL given by the
self-similar solution. First we shall present the self-similar
critical profiles, which are the solutions of the self-similar
equations described in the Appendix, at different regions of
the pR— T plane, and compare them with the profiles of the
simulation at the time of ignition; then we shall compare
them with the simulation profiles at the working stage.

A. Ignition line profiles

Figure 6 compares between the hot spots profiles from
simulations done with various’s at the times where the IL
is crossed and the profiles of the self-similar solution associ-
ated with the same point in theR— T plane(marked by a—d
in Fig. 5). As can be seen, the self-similar profiles are in very
20 3 good agreement with the simulation profiles inside the hot
d d spot[r/R(t)<1] even when the outside density poweris
very far from 1. A good demonstration of the agreement

10 between the self-similar critical profiles and the simulation
profiles at ignition is the prediction of the relative position

=0 between the shock wave and the conduction front. It is seen
% 1 that, as predicted by the self-similar critical profiles, the

r/R /R shock wave is moving behind the conduction wave in the

right branch(points a and pand is moving ahead of the

FIG. 6. The critical temperature and dendityultiply by the hot spot radius, ~conduction wave in the left brandipoints ¢ and § Com-

R) profiles at different locations on the self-similar ignition litemlid line), paring the profiles of point ¢ with those of point b. the tran-

are compared with the profiles from full 1-D simulations at the times when_... .

the self-similar ignition line is crosseglotted ling. The four profiles cor- sition bgtween the left ur_]Stable branch f'ind the rIgh'F stable

respond to the points a, b, ¢, and d defined in Fig. 5. branch is seen. The profiles corresponding to the minimum
value of s are very similar to the self-similar profiles of

in Fig. 5 that this condition is well satisfied faes close to point b.

1, but for  far from 1 it is only approximately satisfied. g Working lines profiles
The fact that the IL is r.'Ot crosse(_i exactly .WlTh:O s a Althougha priori we do not expect to find an agreement
consequence of small differences in the critical profiles ob-

tained when usingy's different from 1 (see Fig. 6 differ- between the profiles along the WLs and the critical profiles

ences that do not exist in the 0-D case. Still, the most-naturaarS they correspond to different points in B —T plane, a

definition for an IL for 1-D hot spots should be the line of the very (_:Iose relation between the. profiles was foun_d.
- . : T Figure 7 compares the profiles of the simulations of hot
self-similar solution. This definition is independent of any

assumptions regarding the initial conditions and it uses th gpots with the boundary conditions parameier—1, 0, 0.9,

boundary conditionpg,er %, for which the WL coincides ‘i.5, and the self-similar critical profile with=30 keV at the
with the IL out ' points marked by A-D in Fig. 5, respectively. The points

It can also be seen from Fig. 5 that the distance betwee\r’1vere defined as the points in which the central temperature

the WLs and the IL is larger in the 1-D pictufgig. 5 than of the simulation prqﬂles equ_als the central _temperaturg of
. X . . . o the chosen self-similar solution. The self-similar solution
in the 0-D picturg(Fig. 3). Using the optical depth definition _ .° = i -

) —= o s with T=30 keV was chosen only as an example; very similar
(6a) instead of thepR definition (6b), this distance become .

: . results are obtained at other temperatufies25 keV, when

somewhat closer to that found in the 0-D picture and the .

e - _ convergence to the WLs has been achieved. The structure of
deviation of theT=0 point from the IL becomes smaller. 3 conduction wave followed by a shock wave, which char-
Thus, although there is na priori superior definition as acterizes the right branch of the self-similar IL, is also seen
discussed in Sec. Il B, practically the optical depth definitionin the WL profiles. The temperature profiles of the different
for the IL (see Fig. 1 should be used. WLs are seen in Fig. 7 to be in good agreement with the

self-similar IL profile. The main difference between the WL

IV. SPATIAL PROFILES profiles and the self-similar profiles is in the density profiles.

We have shown that a close relation exists between th&he density profiles of the WLs agree very well with the

IL and the WLs. The WLs were shown to be almost parallelself-similar solution at the region behind the shock wave
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ferent physical mechanisms, i.esparticle transport, brems-
strahlung losses, electron heat conduction, and hydro-
dynamic-work, each with different temperature and density
scalings, a self-similar solution exists provided the density
profile ahead of the thermonuclear burn wave decreases as
pout L. The complete family of self-similar solutions,
which includes both the regions of stable and unstable solu-
tions, was obtained. Despite the required special boundary
condition, it was shown that the family of self-similar solu-
tions provides a natural definition of the ignition liik.)

A
7%/
B
25/Q_ and a good description of the critical profiles for hot spots
C
D

with more general boundary conditions. The self-similar so-
lutions show that the unstable part of the IL is characterized
by a shock wave moving ahead of the conduction wave,
while at the stable part of the IL the conduction front, driven
by a-particle transport and electron heat conduction, is run-
ning ahead of a retarded shock wave.

The self-similar solutions along the stable part of the IL
were shown to also be related to the asymptotic behavior of
hot spot burn waves propagating into a general outside den-
sity profile of the formpg,<r ~“. Using a simple 0-D model
40 4 it was shown that for givem the trajectories in theR—T
plane of all the hot spots that ignite converge to a common
20 5 attractor, which was called the working lifé/L) of that w.

B % The WLs were found to be parallel to the IL in most of the
=15 L
} P— temperature ranges and their distance from the IL was ana-
0 1 0 1 lytically derived in terms of the relative importance of the
/R r/R physical mechanisms involved. This distance was shown to
FIG. 7. The temperature and densitpultiply by the hot spot radiusR) c_onverge to Zero.aﬁ?_)]" in accordance with the interpreta-
profileé of the self-similar ignition line at the point marked tyin Fig.’5 tion of the_ self-similar WL of thew=1 case as_ the IL. A
(solid line9 are compared with the working lines profilégotted lines of close relation between the WLs and the self-similar IL was
w=-1,0,0.9, 1.5, at the points marked by A, B, C, and D in Fig. 5, whenfound to also exist for the spatial profiles. The temperature
the _central temperature matches the central temperature of the self-simil@:nd density profiles a|ong the different WLs agree very well
profie. with the self-similar profiles at the supersonic region behind
the shock wave. The boundary conditions, definedpthus

where the flow is supersonic and the velocity of the hydro-S€ém to influence only the density at the sub-sonic region
dynamic characteristics is higher than the velocity of thePétween the shock and the conduction front.
self-similar expansion. Ahead of the shock wave the density ~ Self-similar solutions of the type described in this work
profiles are defined and affected by the boundary conditionglS0 exist when accounting for additional physical processes,
and consequently, different profiles are observed for the difwhich were not taken into account for simplicity only. For
ferent WLs. The highepR of the w<1 WLs relative to the €xample, different electron, ion, and radiation temperatures,
self-similar IL, which lets the temperature rise along theseand @ more adequate-particle transport can be included.
WLs while the temperature of the self-similar solutions staysGiven a numerical simulation that includes these or other
constant, is thus mainly a consequence of a higher densifjhysical processes, the stable branch of self-similar solutions
ahead of the shock wave for cases A—C. For d¢hel case can be found eaSin, as was done in Ref. 12, by COﬂSidering
(D), the density ahead of the shock wave is, however, lowethe case of a hot spot propagating in a density profile with
than the self-similar density profiles and therefore the temclose to w~0.9 is usually satisfactory as can be seen from
perature of thes>1 WLs decreases with time. It can be seenFig. 7(C)], for which the WL is very close to the self-similar
that along the WLs the isochoric and the isobdtie pres- IL and provides also the self-similar profiles. The unstable
sure profile is not shown, but it is similar in nature to thesolutions should be found analytically, or by running the
density profile assumptions used by Gus’kov, Krokhin, and simulation withw<<1, choosing very carefully the initial con-
Rozanov? are invalid. ditions in order to get a marginal ignition trajectdisee the
trajectories near the left branch in Fig.. 3 hen, given the
family of self-similar solutions, the ignition conditions, the
asymptotic trajectories, and the profiles of hot spots with
Hot spot ignition and the burn wave propagation condi-different boundary conditions can be constructed using the
tions were investigated using a family of self-similar solu- methods presented here.
tions for thermonuclear burn wave propagation. Although  The self-similar solutions can serve as the underlying
the physics of thermonuclear burn waves includes four dif-1-D solutions for analysis of the effects of two- and three-

T(r) (keV)

40

p(r) R (g/cm?)

20 2
®=0.9

V. CONCLUSIONS
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dimensional perturbations on the ignition of hot spots and onwhereé=r/R(t), andR=dR/dt. Po» Ng, Tos andR are called

the propagation of burn waves. the scales of the corresponding hydrodynamic variables, and
g, m, U, andv are the spatial distribution functions.
ACKNOWLEDGMENT Substituting the separation of variables and#4) in

the partial differential EQ9A1)—(A3), a set of ordinary dif-
ferential equations for the spatidl, dependence is obtained,
provided that no time dependent terms are left in the equa-
tions. This requires that the following terms be time indepen-
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attention to Refs. 11 and 12.

APPENDIX: THE MODEL EQUATIONS AND THE

t.
DERIVATION OF THE SELF-SIMILAR SOLUTION den _
i i Ao poR ko Too Ce€e, NoR
The hydrodynamic equations for the temperaflife,t), W= g, = o ———, 3= e,
velocity u(r,t), and densityp(r,t) of a spherical symmetric Cv Té R Cv poR-R Cv Tg R
DT plasma are: I (o)
~ T ov 2
il el Bt poR-R m{  ngR-R
du  10P " LT PR R
dt poar’ (A1) S TeTR TR
d T where ¢3=2C,T,. An additional requirement iSXR/
C,Tp 4 In PYa =Q, XR=const, whereX stands for the hydrodynamic scalas
) ) o Ny, To, andR. The existence of a solutidibeside the trivial
whered/dt=d/dt+udlJr is the Lagrangian derivative. constant solutionfor these equations is natpriori guaran-

An ideal gas equation of state Wiﬂ":f’/3 is assumed. teed since the number of conditions to be satisfied is larger
The pressure is thus given by =3C,Tp, where  than the number of variables. Notice that theerms depend

C,=3kg/m;. o on pg, No, andR only through the termpyR and ngR; it is

duction, bremsstrahlung losses, and the energy deposited by

the a-particles, is given by poR=const, ngR=const, To=const, R=const.
(A5)
J 2 5/2 al 211/2 : . S :
Q= 2o\ KoT o —Agp T+ €,2n, (A2)  The spatial profiles of the self-similar solution are then de-

rived by numerically integrating the ordinary differential
where ko=1.1-10"° erg/keV'?cm s, A;=2.8- 107 cnPigr S equations for the spatial distribution functiogg), (&),
keVY? ande,=3.5 MeV. U(&), and »(¢) with the appropriate boundary conditions.
The a-particles transport is described in the presentThese ordinary differential equations can be shown to have a
model by a one group diffusion equation for the densitysingularity on the linedJ + C=1, whereU is defined by Eqg.

n(r,t) of the particles: (A4) andC is defined similarly by:
an 19 20 an S n+s A3 . p\¥2 o
T2 D2 ntS,. (A3) c=R-£C(¢) where c= . =3 CyT.

T
The rhs of this equation includes a diffusion term with the
diffusion coefficientD=DT>%p; an absorption ternithe
slowing down of thea-particles is described in the one-
group model by an effective absorptjonith the absorption

It should be noticed here that the singularity line is deter-
mined by the sound velocity in constant temperature and not
the adiabatic sound velocity that was shown to determine the
- a2 ) _ singularity line of the Neudachin and Sasorov self-similar
coefficient2=Cep/T zwhereCe is constant; and a source g4 tion1l12This difference arises from the fact that the so-
termS,=(av)(p/2m;)” where(ov) is the fusion cross sec- | ion of Neudachin and Sasorov does not include any con-
tion. The exact dependence ¢fv) on the temperature iS y,ction mechanisms which tend to keep a smooth tempera-
taken into account, as given in Ref. 18. The absorption of th?ure profile. The lineU+C=1, called the sonic line,

a-particles appears as an energy source in the last term @fgcripes the points where small perturbations travel with the

Eq. (A2). o ) ) same velocity as the profile stretch veloc#i® at the same
If a self-similar solution to Eqs(Al)—(A3) does exist, point. A point & that is under the sonic line

the_n all the physical guantities can be described by a sep?U(§0)+C(§0)<1) cannot hydrodynamically influence the
ration of variable ansatz of the form: conditions ate>£,.

p(r.t)=po(t)-9(£), It can be shown that the boundary conditions imply that
the self-similar solution is above the sonic linegat0 and is
T(r,)=To(t)- m(), (A4) under the sonic line a§=1. Hence, the self-similar solution
u(r,H=R(t)- £U(&), must cross the sonic line. This cross of the sonic line is done
at the discontinuity of the shock wave and thus the self-
n(r,t)=ngy(t) - v(§), similar solutions are supersonic behind the shock and are
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sub-sonic ahead of it. The positi@g of the shock is deter-  ertial Confinement Fusigredited by A. Caruso and E. Sindofiditrice
mined by the boundary conditions and, as shown in the text, Compositori, Bologna, Italy, 1988pp. 617-631.
for given boundary conditions, there exist two solutions—the M- M- Basko, Nucl. Fusior80, 2443(1990.
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