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Inertial confinement fusion ignition criteria, critical profiles, and burn wave
propagation using self-similar solutions

Roy Kishony,a),b) Eli Waxman,c) and Dov Shvarts
Physics Department, Nuclear Research Center—Negev, P.O. Box 9001, Beer-Sheva, Israel

~Received 19 August 1996; accepted 14 January 1997!

The ignition conditions, under which a thermonuclear burn wave propagates from an initial hot spot,
and the characteristics of the propagating burn wave are investigated using a set of self-similar
solutions. Although the self-similar solutions exist only for external density profile that decreases as
rout } r21, they are shown to provide natural ignition criteria and critical profiles for more general
density profiles. The concept of working lines~WLs!, attractors of trajectories in therR 2 T plane
of propagating burn waves, is introduced for density profilesrout } r2v. The WLs are found to be
close and almost parallel to the ignition line~IL !. The distance of the WLs from the IL is given
analytically and shown to depend on all the physical processes involved. The spatial profiles of a
burn wave propagating along the WLs are shown to be closely related to the self-similar critical
profiles. © 1997 American Institute of Physics.@S1070-664X~97!02604-9#

I. INTRODUCTION

The ignition of a central hot spot in deuterium–tritium
~DT! fuel, which generates a thermonuclear burn wave that
propagates through the rest of the DT fuel, is crucial for
achieving high gains in inertial confinement fusion~ICF!.1

Hot spot ignition and burn propagation are expected to be
demonstrated in the National Ignition Facility.1 The limited
energy source~'2 MJ! is expected to provide relatively mar-
ginal hot spot ignition with relatively small areal densities,2

hence motivating detailed investigation of the conditions un-
der which the hot spot ignites and the burn wave propagates.
The ignition conditions are often determined using simplified
zero-dimensional~0-D!, Widner-type models of the hot
spot.3–9 These models describe the hot spot by a few char-
acteristic variables: The radiusR, densityr, and temperature
T. Using these variables, one can express the energy gain
and loss rates of the hot spot by the different physical mecha-
nisms: Thea-particle transport, bremsstrahlung losses, elec-
tron heat conduction, and hydrodynamic work. The ignition
line ~IL ! is then defined as the line in therR2T plane on
which the energy loss and gain rates inside the hot spot are
balanced.

However, the energy deposition rates, and therefore the
IL, depend not only on the characteristic~averaged! variables
r andT, but also on the one-dimensional~1-D! spatial pro-
files of these variables inside the hot spot.8,10 These profiles,
called the critical profiles, are provided in the zero-
dimensional ~0-D! models using additional assumptions.
Usually the profiles in these models are assumed to be spa-
tially homogeneous,3,9 or are derived by simple consider-
ations. For example, the temperature profile can be derived
by assuming a constant heat current inside the hot spot.6

Kirkpatrick10 calculated the critical profiles for a small
DT target filling a static spherical cavity with a constant wall

temperature, assuming an isobaric and static DT. For a speci-
fied wall temperature, the equationṪ(r )[]T(r ,t)/]t50 was
iteratively solved on a discrete spatial grid. Three indepen-
dent solutions were found, two of them stable and one un-
stable. The critical profile was defined as the unstable solu-
tion, T0(r j ), for which a positive eigenvalue of the matrix
M i j5]Ṫ(r i)/]T(r j )uT5T0

exists. These critical profiles, how-

ever, cannot be applied to the problem of hot spot ignition, as
they do not account for the hydrodynamic expansion and for
the propagation of the thermonuclear burn wave into the cold
material.

In the present work a different approach for determining
the ignition criteria is taken. A set of self-similar solutions,
the existence of which was first pointed out by Neudachin
and Sasorov,11,12 is shown to provide both the ignition crite-
ria and the critical profiles. Neudachin and Sasorov showed
that for an outside density profilerout5sr21 and fors higher
than a certain critical valuescr , a self-similar solution that
includes all the relevant physical mechanisms exists.11,12The
critical value scr was used to determine the minimumrR
needed for a prolonged propagation of thermonuclear burn in
density profiles that decrease similarly to 1/r . Analytic ~re-
ducing the problem of numerically solving the partial differ-
ential equations to the much easier problem of numerically
solving the self-similar ordinary differential equation! self-
similar solutions were obtained for the simple case that in-
cludes only hydrodynamic and local deposition of the
a-particles, and it was shown that the distinction between
stable and unstable solutions, proposed by Kirkpatrick,10 is
valid also for the set of self-similar solutions.11 Solutions for
the more general problem, including electron heat conduc-
tion, a-particle transport and radiation losses, were obtained
only by means of numerical simulations.12 As a result, the
unstable solutions, which are important for defining the igni-
tion conditions, were not obtained for the general case.

In the present work the complete set of self-similar so-
lutions, which includes both the stable and unstable solu-
tions, is derived and used to define the IL for the general case
where all physical processes are included. It will be shown
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that although the self-similar solutions exist only for an out-
side density profile that decreases asr21, they provide a
natural global ignition condition that is applicable for more
general density profiles, including the commonly studied
case of constant density.

Following Kirkpatrick, we also use the unstable solu-
tions to define the ignition criteria. However, since we are
also interested in the asymptotic propagation of the burn
wave after ignition, the stable solutions will also be studied
and defined as part of the IL. It will be shown that after
ignition the hot spot trajectories in therR2T plane are at-
tracted to lines, called the working lines~WLs!, which are
close and almost parallel to the stable part of the IL. Thus,
the stable part of the self-similar solution IL can be used as a
generator for the working conditions.

The self-similar approach to the investigation of thermo-
nuclear burn wave propagation has been previously proposed
by Gus’kov, Krokhin, and Rozanov.13 However, since the
authors were not aware of the possibility of including all the
relevant physical mechanisms in a single self-similar solu-
tion for the case of anr21 density profile, only degenerate
self-similar solutions were found. Neglecting the radiation
losses, including eithera-particle transport or electron heat
conduction as the transport mechanism, and assuming either
constant pressure or constant density inside the hot spot, four
different degenerate self-similar solutions were obtained.
The spatial profiles of these solutions, needed to define the
coefficients of the scaling laws, were not derived in this work
and were assumed to be constant. The analysis presented
here shows that neither the isobaric nor the isochoric as-
sumptions are valid in the region of therR2T plane where
the proposed degenerate solutions exist. Therefore, the de-
generate solutions of Gus’kov, Krokhin, and Rozanov do not
describe self-consistently the propagation of the thermo-
nuclear burn wave.

The main purpose of the present work is to study the
relation between the recently derived complete self-similar
solutions to the burn wave propagation problem, the ignition
criteria, the critical profiles, and the hot spot trajectories in
the rR2T plane. The detailed derivation of the self-similar
solution will be presented and discussed in a separate forth-
coming publication. In the next section and in the Appendix,
a description and discussion of the main properties of the
complete self-similar solutions and the differences from the
analytic solution of Refs. 11 and 12 is given~the explicit
spatial profiles of the self-similar solutions are presented
later in Sec. IV!. Also introduced in Sec. II is the IL corre-
sponding to the self-similar solutions compared with that de-
rived from a simple 0-D model. Section III deals with the
propagation of the thermonuclear burn wave after ignition.
The WLs, defined as the attractors of the hot spot trajectories
in therR2T plane after ignition, are shown to be relatively
close and almost parallel to the stable part of the IL. The
distance of the WLs from the IL in therR2T plane is given
analytically in the 0-D model and shown to depend on all the
physical processes involved. Section IV compares the self-
similar solution profiles and the profiles of a full numerical
simulation along the IL and along the WLs.

II. THE IGNITION LINE AND THE SELF-SIMILAR
SOLUTION

We shall first present the commonly used 0-D Widner-
type model to describe the scaling laws of the different
physical mechanisms involved. The conditions for the exis-
tence of a self-similar solution, which includes all the physi-
cal mechanisms, will be derived based on these scaling laws.
Then, the self-similar IL will be constructed and compared
with the IL obtained by the Widner-type model.

A. Widner-type 0-D model

Several physical processes are involved in the thermo-
nuclear burn propagation: Electron heat conduction,a-part-
icle transport, hydrodynamic motion, and radiation losses.
For simplicity, in the present model local thermal equilib-
rium, i.e., equal electron and ion temperatures, is assumed,
radiation is accounted for only by bremsstrahlung losses, and
fuel depletion is neglected. Relaxing these assumptions does
not change the conclusions significantly. Using the 0-D ap-
proach, the energy deposition rates inside the hot spot by the
different physical mechanisms can be written as~we use the
notation of Ref. 9!

WF5xFeaVS r

2mi
D 2^sn&,

Wa5xa f a~rR,T!WF ,

WR5xRA0Vr2T1/2, ~1!

WW5xWP•SCS ,

WC5xCk0T
5/2

T

R
S,

whereWF is the total fusion power produced in the hot spot,
andWa ,WR ,WW , andWC are the energy loss rates from the
hot spot bya-particles, bremsstrahlung, hydrodynamic work
and electron heat conduction, respectively. The fraction of
the totala-particles energy released in fusion reactions that
escapes the hot spot,f a , is a function of the hot spot tem-
peratureT and its areal densityrR.14 V andS are the hot
spot volume, 4pR3/3, and area, 4pR2, respectively. The
pressure inside the hot spot isP52CVrT/3, where
Cv53kB/mi and the expansion velocity of the hot spot is
taken to be proportional to the sound speed
CS5(2kBT/mi)

1/2. In general, if one wishes to study the hot
spot formation stage, this velocity should be replaced with an
incoming initial negative velocity,1 which is changing ac-
cording to a simple force law such as:d(rVṘ)/dt}PS.
However, since in the present work we are interested in de-
scribing only the burn wave propagation stage, the assump-
tion of expansion with sound speed velocity is satisfactory~it
can easily be shown that the above force law leads to this
behavior!. The values of the dimensional constantsea , mi ,
A0, k0, andkB are defined similar to Refs. 1 and 9, except
for the value ofk0 which was taken from Ref. 13 and differs
from that of Ref. 1 by a factor of 4 due to the different values
assumed for the Coulomb logarithm~ln L58 is assumed in
Ref. 13 and lnL52 is assumed in Ref. 1!. Here,xF , xa , xR ,
xW , and xC are dimensionless coefficients of the order of
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one, which depend on the assumed critical profiles. Assum-
ing spatially homogeneous profiles one obtainsxW52,9

xF5xa5xR51,3,9 and assuming constant heat current one
obtainsxC54/7.6

Given the energy deposition rates inside the hot spot, Eq.
~1!, the IL is defined by the energy balance equation:

W̃a1W̃R1W̃W1W̃C51, ~2!

whereW̃i5Wi /WF is the power loss due to thei th process
( i5a,R,W,C) normalized to the total fusion power. The IL,
resulting from Eq.~2!, is represented by the dashed line in
Fig. 1.

The relative importance of the different energy loss
mechanisms is shown in Fig. 2, where the normalized energy
loss powers are plotted as a function of the temperature along
the IL. It is seen that at low temperature,T<6 keV, radiation

losses are dominant, while at intermediate temperature, 6
keV,T,20 keV, hydrodynamic expansion losses are domi-
nant and at high temperatures,T.30 keV, both hydrody-
namic expansion and thea-particle transport are important
and electron heat conduction is somewhat less important.
With the higher value ofk0, assumed in Ref. 1, the relative
importance of the electron heat conduction becomes larger
and is about a factor of 2 higher than shown in Fig. 2. But, it
is still somewhat lower than the hydrodynamic expansion
and thea-particle transport contributions.

The convergence ofW̃a to a constant value at high tem-
peratures, seen in Fig. 2, was explained in Refs. 5 and 15, as
a self-regulation of the radius of the hot spot to the range of
the a-particles. A small hot spot radius relative to the
a-particle slowing down range causes a large portion of the
a-particles energy be deposited outside the spot, leading to
an increased hot spot radius, which then decreases the por-
tion of thea-particles energy that escapes from the hot spot.
This negative feedback in thea-particles energy deposition
within the hot spot, together with the fact that the time evo-
lution of the hot spot is along trajectories that are close and
parallel to the IL, as will be shown in the next section, ex-
plain the convergence ofW̃a to a constant value at high
temperatures along the IL, seen in Fig. 2. Similar arguments
hold for both the electron heat conduction and the PdV
losses.

B. 1-D self-similar solution

In order to find the critical profiles at ignition we shall
now examine the conditions under which a self-similar solu-
tion to the propagating burn wave exists. These conditions
were obtained by Neudachin and Sasorov,11 but are dis-
cussed here from a different point of view based on the 0-D
analysis presented in the previous section. It will also be
shown that under the conditions that such a self-similar so-
lution exists, the energy deposition rates inside the hot spot
are balanced so that the profiles of that solution are indeed
the critical profiles.

Self-similar solutions exist in general if no characteristic
time or length exists in the problem.16 In order to study when
one can expect a self-similar thermonuclear burn wave to
exist, we start by noticing that the four physical mechanisms
described by Eq.~1! depend differently on the hot spot pa-
rameters, i.e., its radiusR, densityr, and temperatureT. In
order to avoid the appearance of any characteristic time or
length in the solution, the ratios of the various energy loss
and gain mechanisms must be time independent. Otherwise,
the time, in which the importance of two such mechanism is
equal, for example, would be a characteristic time. As seen
from Eq.~1! the ratios between the energy loss and gain rates
are functions of the hot spot temperatureT and areal density
rR, but not ofr andR independently~the weak logarithmic-
dependence of the Coulomb logarithm lnL on r and T is
neglected!. In order not to produce new time or length scales
in the problem it is necessary that the temperature and areal
density scales of the self-similar solution will not vary with
time:

T5const, rR5const. ~3!

FIG. 1. The ignition line~IL ! in the rR2T plane. The 0-D IL is shown
together with the self-similar IL for the mean density definitionr̄R of Eq.
~6b! and for the optical depth definition*0

Rrdr of Eq. ~6a!.

FIG. 2. Hot spot energy loss rates by thea-particle heating~a!, bremsstrah-
lung losses~Rad!, electron heat conduction losses~Cond!, and hydrody-
namic work~PdV! as a function of the temperature along the ignition line
~thick lines! and along thev50 working line ~thin lines! using the 0-D
models. The partial loss rates are normalized to the total loss rate.
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For a more formal derivation of these requirements see the
Appendix.

Requirements~3! can only be satisfied for boundary con-
ditions where the temperature and density outside the hot
spot are given by

Tout5const, rout5sr21, ~4!

wheres is a constant having the dimensions of an areal den-
sity. Boundary conditions that are different from Eq.~4!
would not allow self-similarity. For example, ifTout is not
constant, the time in whichTout and T become equal will
serve as a characteristic time. The self-similar solution is
defined by the two boundary conditions of Eq.~4!, and con-
sequently we shall deal with a two parameter family~s and
Tout! of self-similar solutions. We shall actually see that for
each pair ofs andTout either no self-similar solution exists,
or two solutions~stable and unstable! exist, defining the
stable and unstable parts of the IL. The self-similar solution
profiles for different values ofs are presented and discussed
in Sec. IV ~see Fig. 6 below!.

In the above derivation we have assumed that the veloc-
ity of the material outside the hot spot is zero~uout50!. Ac-
tually, the self-similar solution also exists with any constant
boundary velocity~uout5const!. The constant temperature
scale, defined in Eq.~3!, means constant sound speed and
thus, to avoid the appearance of a new time scale, all other
velocities in the self-similar solution must also be constant.
This implies constant boundary velocityuout as well as con-
stant expansion velocityṘ.

Turning back to the ignition conditions, it should be no-
ticed that the constant temperature requirement of Eq.~3!,
which was imposed by the self-similar assumptions, implies
dT/dt50, results in balanced energy deposition rates inside
the hot spot in the self-similar solutions. Thus, the IL may be
defined based on these solutions, and the spatial profiles of
the solutions are critical profiles. Each of the two parameter
family of self-similar solutions,~s,Tout!, can be mapped to a
point in therR2T plane. Then the set of self-similar solu-
tions with a givenTout and varieds describes a line in that
plane. This line is the IL for hot spots with a given outside
temperatureTout. When looking for solutions withTout!6
keV, which is the relevant parameter range for defining an
ICF IL, the IL depends only weakly onTout. Even though the
self-similar IL is found by considering the case ofrout}r

21,
it will be shown in the next sections to provide an IL for
more general density profiles.

The actual mapping of the self-similar solutions profiles
to therR2T plane can be done using various definitions for
the characteristic temperature and areal density. We choose
to defineT̄ as the mass averaged temperature of the hot spot:

T̄5
1

M E
0

R

Tr4pr 2 dr, ~5!

whereM5*0
Rr4pr 2 dr is the total hot spot mass.

For the areal density we shall consider two definitions.
The first definition is the commonly used optical depthrR of
the hot spot:

rR5E
0

R

r dr. ~6a!

The second definition is the product of the mean density of
the hot spot and its radius,r̄R, which is a natural definition
for the density profile of the self-similar solutions since,
from mass conservation, it can be shown to be proportional
to s:

r̄R5F 1V E
0

R

r4pr 2 drG•R5
3

2
s. ~6b!

Other definitions can also be used for bothT and rR and
there is noa priori superior definition, since for any of the
different physical processes, differentrR andT definitions
are more appropriate. For example, the optical depth~6a!
definition is more naturally adequate for thea-particle trans-
port, but the fusion rate per unit mass is better described by
the mean density definition~6b!. In the following we shall
mainly use ther̄R definition ~6b! which is more natural for
the profiles of the self-similar solutions, but the more com-
mon definition of~6a! gives similar results.

The self similar ILs that correspond to the two areal
densities definitions~6a! and~6b! with the mean temperature
definition ~5! are shown in Fig. 1 for the caseTout52 keV.
ILs of other values ofTout in the relevant rangeTout!6 keV,
not shown in the figure, are very close to theTout52 keV line
at the high temperature regionT@Tout and are slightly dif-
ferent at the low temperature region, where the smallerTout
is, the higher is its IL. It is seen that the two definitions ofrR
result in relatively close lines. The 0-D IL is also relatively
close to the self-similar ILs. Notice that this good correspon-
dence between the 0-D IL and the self-similar IL is a conse-
quence of the right choice of thex i coefficients of Eq.~1! for
the 0-D model. However, this choice is only an approxima-
tion since it does not account for the different spatial distri-
butions inside the hot spot which may change substantially at
different regions of therR2T plane.

The self-similar IL, on the other hand, self-consistently
includes the correct 1-D spatial distribution. A striking ex-
ample is the hydrodynamic work term. Different descriptions
for the PdV term have been proposed for the 0-D models,
depending on whether or not a shock wave is propagating
ahead of the conduction front.5,8,9 The self-similar solution
self-consistently includes hydrodynamics and shocks to-
gether with the other physical mechanisms, and therefore
naturally describes the transition between a shock wave front
and a conduction front.

A self-similar thermonuclear burn wave in an outside
density profile which decreases asrout}r

21 exists only for
values ofs which are higher than a certain critical valuescr .
This critical value is about 0.33 g/cm2 as can be deduced
from Fig. 1. The value decreases to 0.23 g/cm2 when local
deposition of thea-particles is assumed and decreases
slightly further to 0.22 g/cm2, when the bremsstrahlung ra-
diation is also neglected. Using numerical simulations, Neu-
dachin and Sasorov obtainedscr>0.43 g/cm2 for the case
which includes all the physical mechanisms.12 This value is
about 25% higher than our analytic result, 0.33 g/cm2. As
indicated by Neudachin and Sasorov, numerical simulations
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may indeed give higher values forscr since the attractive
region of the self-similar solution becomes very small when
s→scr . A similar difference of about 25%, in the critical
value ofs between numerical simulations and analytic solu-
tions, was obtained by Neudachin and Sasorov also for the
case of local deposition of thea-particles. In addition, the
models and coefficients used by Neudachin and Sasorov to
describe the various physical processes are somewhat differ-
ent from those used by us, and may lead to some additional
difference in the critical value ofs.

The ILs of Fig. 1 consist of two branches that will
be referred to as the left~L! and the right~R! branch. Con-

sidering the change ofT̄
˙
as a function ofT̄ we note that

for fixed r̄R, T̄
˙

is zero for the two temperaturesT̄L
andT̄R (T̄L,T̄R) on the IL, and is positive forT̄L,T̄,T̄R .

It follows that]T̄
˙
/]T̄u T̄L . 0 and]T̄

˙
/]T̄u T̄R,0, which means

that the solution atT̄L is unstable while theT̄R solution is
stable. As will be shown in the next section, the fact that the
right branch is stable while the left branch is unstable causes
the hot spot trajectories to diverge from that left unstable
branch and to be attracted to the right stable branch.

It is seen from Fig. 2 that at the left branch, where the
temperature is low, the radiation losses (W̃R) and the hydro-
dynamic work (W̃W) dominate the transport and conduction
mechanisms (W̃a1W̃C), while at the high temperatures of
the right branch the situation is reversed. Accordingly, the
stable solutions of the right branch are characterized by a
propagating thermonuclear burn wave in which a conduction
wave, based ona-particle transport and electron heat con-
duction, is moving faster and ahead of a retarded shock wave
~see also the discussion of Fig. 6 below!. In the unstable
solutions, however, the shock wave moves ahead of the con-
duction wave. That picture, in which the burn wave structure
changes between an unstable detonation front and a stable
conduction front, could not been obtained in Refs. 11 and 12
since the set which includes both the stable and the unstable
solutions was found only for the degenerate case which does
not include the electron heat conduction and thea-particle
transport mechanisms and therefore always has a detonation
front structure.

Kirkpatrick defined the ignition conditions by the un-
stable solutions of his critical profile equations. These un-
stable solutions correspond to the left branch of the self-
similar IL. Two other, stable, solutions with temperatures
above and below the temperature of the unstable solution
were also found by Kirkpatrick. The stable solution with the
higher temperature corresponds to the right branch of the
self-similar IL. The other stable solution corresponds to a
class of solution, not investigated in the present work, whose
hot spot temperature is of the order of the outside tempera-
ture Tout. At high enough outside temperature the three so-
lutions coincide and a Wheeler ignition mode occurs.17

If only three of the five physical mechanisms described
in Eq. ~1! are taken into account, the self-similar require-
ments, Eq.~3!, and therefore the boundary conditions, Eq.
~4!, can be relaxed. In this case, the requirement for constant
ratios between the three leftWi ’s leads only to two equations
for the three unknowns~T, r, andR! and solutions that do

not satisfy the self-similar requirement~3! can be obtained.
Gus’kov, Krokhin, and Rozanov13 have proposed a self-
similar solution of that kind for the propagating thermo-
nuclear burn wave problem. Neglecting both the radiation
losses~WR50! and either thea-particle transport~Wa50! or
the electron heat conduction (WC50), only three of the five
physical mechanisms described in~1! were taken into ac-
count. Thus, only two ratios of energy rates had to be kept
constant. A third, non-self-similar equation was added by
assuming that the hydrodynamic propagation is either much
slower or much faster than the conduction front propagation.
Respectively, it was assumed that either the density is con-
stant~r5const!, or that the front moves with a velocity of a
shock waveṘ}(rT)1/2 and a constant pressure is assumed
behind the shock~P5const!. The three equations were then
solved for the scalesT(t), r(t), andR(t). Although the spa-
tial profiles of the density and pressure could be derived,
they were not obtained in that work, and were rather as-
sumed to be constant. Analyzing the various mechanisms
participating in the hot spot evolution, Fig. 2, it is apparent
that the radiation losses are the dominant mechanism and
cannot be neglected at the low temperature region, while at
the high temperature region hydrodynamics becomes impor-
tant. It will also be shown that neither the assumption of
constant density nor the constant pressure assumption hold at
these regions. Therefore, the degenerate self-similar solu-
tions of Gus’kov, Krokhin, and Rozanov13 do not describe
self-consistently the ignition and the burn wave propagation
in any of the IL regions in therR2T plane. We shall return
to this comparison in the next section.

III. WORKING LINES: ATTRACTORS OF HOT SPOT
TRAJECTORIES IN THE rR2T PLANE

A simple 0-D model that is based on the energy deposi-
tion rates given in Eq.~1! is used to investigate the trajecto-
ries of hot spots in therR2T plane. It will be shown that
after ignition the trajectories of all hot spots are attracted to
lines, defined as the working lines~WLs!, which will be
given analytically in terms of their distance from the IL. This
attraction of the hot spot trajectories to WLs, which reflects
the stability of the right branch of the self-similar IL, will
also be demonstrated using a full 1-D numerical simulation.

A. 0-D model for hot spot trajectories

In the 0-D model the temperature of the hot spot changes
due to the energy deposited inside the hot spot,Win5WF

2Wa2WC2WR2WW . Due to the short range of the
a-particles and of the heat conducting electrons in the cold
fuel outside the hot spot, the energyWout5Wa1WC carried
by these transport mechanisms outside the hot spot is as-
sumed to heat up a thin layer of the cold fuel outside the hot
spot, from its initial temperature up to the hot spot tempera-
ture. The radiation lossesWR are assumed in the present
model to escape out of the entire DT pellet. The hydrody-
namic workWW is assumed to decrease the hot spot internal
energy as it transforms it into kinetic energy. The time evo-
lution of the hot spot temperatureT, massM5r•V, and
radiusR can thus be written, similar to Refs. 8 and 15, as
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CVMṪ5Win ,

CV~T2Tout!Ṁ5Wout, ~7!

SroutṘ5Ṁ .

Since the model described by Eq.~7! takes into account the
propagation of the burn wave into the initially cold fuel, the
outside conditionsrout andTout, which define the mass and
internal energy of the cold fuel that is overtaken by the burn
wave, should be specified. Motivated by the self-similar so-
lution, we take the conditions outside the hot spot to be
rout5sR2v andTout5const.

The model parameters are therefore the hot spot’s initial
conditions forrR and T and the outside condition param-
etersv andTout. The coefficients is not a free parameter and
is defined by the requirementr51/V*0

Rsr2v4pr 2 dr at
t50.

The temporal evolution of the hot spot in the 0-D model
is demonstrated in Fig. 3, presenting trajectories in the
rR2T plane for the outside conditionsv521, 0, 0.9, 1.5,
andTout52 keV ~as pointed out before, very similar results
are obtained for other outside temperatures as long as
Tout!T!. Shown in Fig. 3 are the different hot spot trajecto-
ries and the 0-D IL which is defined by Eq.~2!, i.e., byṪ50.
Note that the trajectories of all the hot spots that ignite cross
the IL perpendicular to the temperature axis, i.e., withṪ50,
regardless of their outside and initial conditions. This results
from the fact that in the 0-D model the coefficientsxi in Eq.
~1! are fixed, independent of the conditions outside the hot

spot. Therefore, the 0-D IL does not depend on the outside
condition parametersv andTout and can be viewed as a 0-D
global IL. Note also that for the hot spot trajectories with
v.1 the areal densityrR decreases with time as their radius
R increases and therefore no sustained thermonuclear burn
wave can exist in a density profile that is decreasing faster
than 1/r .

As is seen from Fig. 3, ignition is possible also from
points under the IL. These types of trajectories, in which the
hot spot temperature initially decreases while its areal den-
sity increases, and only then the IL is crossed and the tem-
perature starts to increase, is called sub-critical ignition.5,7

The sub-critical ignition line~SCIL! is defined by the most
marginal ignition trajectory.5 The marginal trajectories for
v50 and forv50.9 are shown and marked in Fig. 3. It can
be seen that, unlike the IL, the SCIL does depend on the
conditions outside the hot spot. Note also the divergence of
the marginal trajectories near the left branch of the IL, which
is in accordance with the instability of that branch discussed
in Sec. II. In the present paper we focus on the IL, and the
SCIL is not discussed further.

It is apparent from Fig. 3 that for any givenv all hot
spot trajectories that ignite are attracted to an asymptotic
trajectory. These asymptotic trajectories can be described
analytically by writing the 0-D model equations~7! as a
trajectory equation:

dT

d~rR!
5
h~rR,T!

f~v!
, ~8!

FIG. 3. The ignition line, hot spot trajectories, and working lines in therR2T plane as described by the 0-D model. Trajectories of hot spots with different
initial conditions and with the boundary conditionsTout52 keV androut5r2v for v521, 0, 0.9, 1.5, are shown~thin lines!. Also shown are the working lines
for those boundary conditions~thick lines!. The marginal trajectories, which define the SCIL, are marked with ‘‘o’’ for v50, 0.9.
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where

h~rR,T!5
T2Tout

rR
•

Win

Wout
,

and

f~v!5
12v

32v
.

The variablerR at a given temperatureT can be replaced
with the new variablet5~rR2H IL!/H IL , whereH IL is de-
fined as the IL areal density for the temperatureT and is
given by the implicit equationh~H IL ,T!50. Expandingh to
first order about the IL point~H IL ,T!, h(rR,T) 5 tH IL]h/
](rR)urR5H IL

, Eq. ~8! can be written as

tH IL

dt

dHIL
5t0f~v!2t, ~9!

where

t05S H IL

2]h

]T U
rR5H IL

D 21

5WoutS 2]Win

]T U
rR5H IL

~T2Tout!D 21

.

From Eq.~9! it follows thatt→t0f~v!, provided thatt0 does
not vary significantly withH IL and thatt.0 whenH IL is
increasing with time or thatt,0 whenH IL is decreasing
~i.e., above the IL forv,1 and below the IL forv.1!.
Hence, for a givenTout all hot spot trajectories that ignite for
v,1, or the trajectories that are below the IL forv.1, are
attracted to an asymptotic trajectory, regardless of their ini-
tial conditions, which we shall call a working line~WL! for
thesev andTout. The WLs are thus defined by

HWL~T,v!5H IL~T!@11t0f~v!#. ~10!

The WLs ofv521, 0, 0.9, 1.5, andTout52 keV are shown
in Fig. 3 by the thick lines and are seen to be indeed the
attractors of the corresponding hot spot trajectories for these
v’s. Forv51, the self-similar solution line is both the IL and
the WL.

The distancet0f~v! of the WLs from the IL is described
in Fig. 4. The figure shows botht0 as a function of the
temperature along the stable right branch of the IL andf~v!
as a function ofv. At the left, unstable, branch of the ILt0 is
negative.t0, which is positive on the right branch, diverges
to infinity at the minimum of the IL, while at temperatures
above 25 keVt0 is approximately given byt0.0.4.

In order to investigate the relative importance of the dif-
ferent physical mechanisms in determining the value oft0,
we can writet0 @Eq. ~9! assumingTout!T# as

t05
W̃C1W̃a

nW̃a1~7/22m!W̃C1~1/22m!W̃R1~3/22m!W̃W

,

~11!

wherem5] ln^sn&/] ln T andn5] ln f a/] ln T.
The denominator of Eq.~11! resembles the ignition con-

dition ~2!, except for the different coefficients, which result

from the difference in the temperature dependence of each
mechanism. Using the values for theW̃i ’s given in Fig. 2,
and the fact thatm ranges from 1 atT'25 keV to 0 atT.50
keV andn'3/2 over all the temperature range,14 it can be
seen that only the radiation term (1/22m)WR can be ne-
glected in Eq.~11!. Although W̃C is relatively small com-
pared toW̃a andW̃W , the high 7/2 coefficient of the electron
heat conduction term due to its high nonlinearity makes it
comparable to thea-particle transport and to the hydrody-
namic work terms. With the higher value ofk0, assumed in
Ref. 1, the electron heat conduction becomes the dominant
term in determining the distance of the WLs from the IL.

The relative importance of the different energy loss
mechanisms along the WL of thev50 case is shown in Fig.
2. The values are seen to be very similar to those on the IL.
Of course, on the WL the sum of all the energy loss mecha-
nisms (Wa1WR1WW1WC), by which the values in the
figure are normalized, is less than the fusion power, i.e.,
W̃a1W̃R1W̃W1W̃C,1 on the WL.

It should be noticed that when only two of the energy
mechanisms are taken into account and assuming that they
both can be approximated as power laws of the temperature,
the distancet0 becomes identically constant, i.e., the WLs
are exactly parallel to the IL. This was indicated by Lindl6

who showed that the hot spot trajectories are attracted to a
line parallel to the IL when only hydrodynamic compression
(WW}rTṘR2) and electron heat conduction (WC}RT7/2)
are considered. In this case fromWW/WC5const one obtains
a T}(rR)2/5 trajectory.

Rozanov’s13 self-similar solution to the burn wave
trajectory takes into account three mechanisms: Fusion
(WF}R3r2Tm), hydrodynamics (WW}rTṘR2), and either
electron heat conduction (WC}RT7/2) or a-particle transport
( f a}T3/2/rR). Although three mechanisms are included, the
solutions can still be shown to be exactly parallel to the IL,
which is a consequence of the hydrodynamic term having the
same scaling laws as the rate of the hot spot internal energy
changed(TrR3)/dt. The IL to which Rozanov’s solutions
are parallel is a degenerate IL, which is defined only by the

FIG. 4. The distancet0f~v! of the working lines from the ignition line,
obtained by the 0-D model, is described.t0 is shown as a function of the
temperature along the ignition line.f~v! as a function ofv is shown in the
small figure.
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mechanisms that were taken into account and is therefore
different from the nondegenerate IL that includes all the
physical mechanisms. It was found, however, that the slope
of this degenerate IL is close to the slope of the nondegen-
erate IL at high temperatures where the ratios of the various
mechanisms are constant~see Fig. 2!.

B. Trajectories in a 1-D simulation

We shall now use a full 1-D numerical simulation to
show that the 0-D picture of Fig. 3 remains qualitatively the
same in 1-D, and that indeed the self-similar solutions line
serves as the IL for the 1-D trajectories.

The simulation solves the partial differential equations
given in the Appendix@Eqs.~A1!–~A3!#, which include hy-
drodynamics, one-group diffusion ofa-particles, electron
heat conduction, and bremsstrahlung losses. Equal electron
and ion temperatures are assumed for simplicity and the fuel
depletion is neglected.

The initial conditions used within the hot spot are of a
homogeneous and static hot spot with constant temperature
and density profiles. Different initial hot spot temperature
and areal density are considered. The conditions outside the
hot spot are taken, as in the 0-D model, to beTout52 keV
androut5r2v with differentv’s.

Figure 5 shows the 1-D hot spot trajectories in ther̄R
2T̄ plane, defined by Eqs.~5! and ~6b!, for different initial
and boundary conditions. Also shown is the self-similar IL.
Qualitatively the results of the 1-D model~Fig. 5! are similar
in nature to the results of the 0-D model~Fig. 3! with the
self-similar solutions line as the IL. Similar to the 0-D case,

the trajectories for a givenv converge to an asymptotic WL
and the WLs of the differentv’s converge, asv→1, to the
self-similar IL.

This convergence of the WLs to the self-similar IL can
be understood based on the asymptotic self-similar assump-
tion. The WLs were defined to be the attractors of the hot
spot trajectories in therR2T plane. According to the
asymptotic self-similar assumption, a self-similar solution is
the asymptotic solution to which all other solutions, regard-
less of their initial conditions, converge.16 Thus, the self-
similar solution line, described in Sec. II, is the attractor of
the trajectories of thev51 case and therefore can be thought
of as thev51 WL. The problem of finding the global IL,
which is applicable for general boundary conditions, can thus
be reduced to the problem of finding the WL for thev51
case only, for which the self-similar solution exists. This
conclusion is applicable when accounting for additional
physical processes, such as a more complexa-particle and
radiation transport, fuel depletion, and different electron and
ion temperatures. Since these processes also depend only on
T andrR, a self-similar solution exists for the same bound-
ary condition. Taking into account these more complex
physical processes, the right stable branch of the self-similar
IL can be obtained, as was done in Ref. 12, by running a
numerical simulation for the case of a hot spot propagating
in a density profile withv close to 1 ~v'0.9 is usually
satisfactory!, for which the WL is very close to the self-
similar IL.

If the self-similar solution line is the IL then all hot

spot’s trajectories should pass this line withT̄
˙

50. It is seen

FIG. 5. The self-similar ignition line and the hot spot trajectories of a full 1-D simulation are shown in ther̄R2T̄ plane. The different trajectories correspond
to different initial conditions and to the boundary conditionsTout52 keV androut5r2v for v521, 0, 0.9, 1.5.
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in Fig. 5 that this condition is well satisfied forv close to
1, but for v far from 1 it is only approximately satisfied.

The fact that the IL is not crossed exactly withT̄
˙

50 is a
consequence of small differences in the critical profiles ob-
tained when usingv’s different from 1~see Fig. 6!, differ-
ences that do not exist in the 0-D case. Still, the most-natural
definition for an IL for 1-D hot spots should be the line of the
self-similar solution. This definition is independent of any
assumptions regarding the initial conditions and it uses the
boundary conditionrout}r

21, for which the WL coincides
with the IL.

It can also be seen from Fig. 5 that the distance between
the WLs and the IL is larger in the 1-D picture~Fig. 5! than
in the 0-D picture~Fig. 3!. Using the optical depth definition
~6a! instead of ther̄R definition ~6b!, this distance become
somewhat closer to that found in the 0-D picture and the

deviation of theT̄
˙

50 point from the IL becomes smaller.
Thus, although there is noa priori superior definition as
discussed in Sec. II B, practically the optical depth definition
for the IL ~see Fig. 1! should be used.

IV. SPATIAL PROFILES

We have shown that a close relation exists between the
IL and the WLs. The WLs were shown to be almost parallel

to the IL and to converge to the IL asv→1. The relative
importance of the different physical-mechanisms along the
WLs was shown to be very similar to their relative impor-
tance along the IL. Motivated by this close relation between
the WLs and the self-similar IL, we shall now compare their
spatial profiles and show that one can learn about the profiles
of the WLs from the critical profiles of the IL given by the
self-similar solution. First we shall present the self-similar
critical profiles, which are the solutions of the self-similar
equations described in the Appendix, at different regions of
the r̄R2T̄ plane, and compare them with the profiles of the
simulation at the time of ignition; then we shall compare
them with the simulation profiles at the working stage.

A. Ignition line profiles

Figure 6 compares between the hot spots profiles from
simulations done with variousv’s at the times where the IL
is crossed and the profiles of the self-similar solution associ-
ated with the same point in ther̄R2T̄ plane~marked by a–d
in Fig. 5!. As can be seen, the self-similar profiles are in very
good agreement with the simulation profiles inside the hot
spot @r /R(t),1# even when the outside density powerv is
very far from 1. A good demonstration of the agreement
between the self-similar critical profiles and the simulation
profiles at ignition is the prediction of the relative position
between the shock wave and the conduction front. It is seen
that, as predicted by the self-similar critical profiles, the
shock wave is moving behind the conduction wave in the
right branch~points a and b! and is moving ahead of the
conduction wave in the left branch~points c and d!. Com-
paring the profiles of point c with those of point b, the tran-
sition between the left unstable branch and the right stable
branch is seen. The profiles corresponding to the minimum
value of s are very similar to the self-similar profiles of
point b.

B. Working lines profiles

Althougha priori we do not expect to find an agreement
between the profiles along the WLs and the critical profiles
as they correspond to different points in ther̄R2T̄ plane, a
very close relation between the profiles was found.

Figure 7 compares the profiles of the simulations of hot
spots with the boundary conditions parameterv521, 0, 0.9,
1.5, and the self-similar critical profile withT̄530 keV at the
points marked by A–D in Fig. 5, respectively. The points
were defined as the points in which the central temperature
of the simulation profiles equals the central temperature of
the chosen self-similar solution. The self-similar solution
with T̄530 keV was chosen only as an example; very similar
results are obtained at other temperatures,T̄.25 keV, when
convergence to the WLs has been achieved. The structure of
a conduction wave followed by a shock wave, which char-
acterizes the right branch of the self-similar IL, is also seen
in the WL profiles. The temperature profiles of the different
WLs are seen in Fig. 7 to be in good agreement with the
self-similar IL profile. The main difference between the WL
profiles and the self-similar profiles is in the density profiles.
The density profiles of the WLs agree very well with the
self-similar solution at the region behind the shock wave

FIG. 6. The critical temperature and density~multiply by the hot spot radius,
R! profiles at different locations on the self-similar ignition line~solid line!,
are compared with the profiles from full 1-D simulations at the times when
the self-similar ignition line is crossed~dotted line!. The four profiles cor-
respond to the points a, b, c, and d defined in Fig. 5.
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where the flow is supersonic and the velocity of the hydro-
dynamic characteristics is higher than the velocity of the
self-similar expansion. Ahead of the shock wave the density
profiles are defined and affected by the boundary conditions,
and consequently, different profiles are observed for the dif-
ferent WLs. The higherr̄R of thev,1 WLs relative to the
self-similar IL, which lets the temperature rise along these
WLs while the temperature of the self-similar solutions stays
constant, is thus mainly a consequence of a higher density
ahead of the shock wave for cases A–C. For thev.1 case
~D!, the density ahead of the shock wave is, however, lower
than the self-similar density profiles and therefore the tem-
perature of thev.1 WLs decreases with time. It can be seen
that along the WLs the isochoric and the isobaric~the pres-
sure profile is not shown, but it is similar in nature to the
density profile! assumptions used by Gus’kov, Krokhin, and
Rozanov13 are invalid.

V. CONCLUSIONS

Hot spot ignition and the burn wave propagation condi-
tions were investigated using a family of self-similar solu-
tions for thermonuclear burn wave propagation. Although
the physics of thermonuclear burn waves includes four dif-

ferent physical mechanisms, i.e.,a-particle transport, brems-
strahlung losses, electron heat conduction, and hydro-
dynamic-work, each with different temperature and density
scalings, a self-similar solution exists provided the density
profile ahead of the thermonuclear burn wave decreases as
rout}r

21. The complete family of self-similar solutions,
which includes both the regions of stable and unstable solu-
tions, was obtained. Despite the required special boundary
condition, it was shown that the family of self-similar solu-
tions provides a natural definition of the ignition line~IL !
and a good description of the critical profiles for hot spots
with more general boundary conditions. The self-similar so-
lutions show that the unstable part of the IL is characterized
by a shock wave moving ahead of the conduction wave,
while at the stable part of the IL the conduction front, driven
by a-particle transport and electron heat conduction, is run-
ning ahead of a retarded shock wave.

The self-similar solutions along the stable part of the IL
were shown to also be related to the asymptotic behavior of
hot spot burn waves propagating into a general outside den-
sity profile of the formrout}r

2v. Using a simple 0-D model
it was shown that for givenv the trajectories in therR2T
plane of all the hot spots that ignite converge to a common
attractor, which was called the working line~WL! of thatv.
The WLs were found to be parallel to the IL in most of the
temperature ranges and their distance from the IL was ana-
lytically derived in terms of the relative importance of the
physical mechanisms involved. This distance was shown to
converge to zero asv→1, in accordance with the interpreta-
tion of the self-similar WL of thev51 case as the IL. A
close relation between the WLs and the self-similar IL was
found to also exist for the spatial profiles. The temperature
and density profiles along the different WLs agree very well
with the self-similar profiles at the supersonic region behind
the shock wave. The boundary conditions, defined byv, thus
seem to influence only the density at the sub-sonic region
between the shock and the conduction front.

Self-similar solutions of the type described in this work
also exist when accounting for additional physical processes,
which were not taken into account for simplicity only. For
example, different electron, ion, and radiation temperatures,
and a more adequatea-particle transport can be included.
Given a numerical simulation that includes these or other
physical processes, the stable branch of self-similar solutions
can be found easily, as was done in Ref. 12, by considering
the case of a hot spot propagating in a density profile withv
close to 1@v'0.9 is usually satisfactory as can be seen from
Fig. 7~C!#, for which the WL is very close to the self-similar
IL and provides also the self-similar profiles. The unstable
solutions should be found analytically, or by running the
simulation withv,1, choosing very carefully the initial con-
ditions in order to get a marginal ignition trajectory~see the
trajectories near the left branch in Fig. 5!. Then, given the
family of self-similar solutions, the ignition conditions, the
asymptotic trajectories, and the profiles of hot spots with
different boundary conditions can be constructed using the
methods presented here.

The self-similar solutions can serve as the underlying
1-D solutions for analysis of the effects of two- and three-

FIG. 7. The temperature and density~multiply by the hot spot radius,R!
profiles of the self-similar ignition line at the point marked by1 in Fig. 5
~solid lines! are compared with the working lines profiles~dotted lines! of
v521, 0, 0.9, 1.5, at the points marked by A, B, C, and D in Fig. 5, when
the central temperature matches the central temperature of the self-similar
profile.

1394 Phys. Plasmas, Vol. 4, No. 5, May 1997 Kishony, Waxman, and Shvarts



dimensional perturbations on the ignition of hot spots and on
the propagation of burn waves.
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APPENDIX: THE MODEL EQUATIONS AND THE
DERIVATION OF THE SELF-SIMILAR SOLUTION

The hydrodynamic equations for the temperatureT(r ,t),
velocity u(r ,t), and densityr(r ,t) of a spherical symmetric
DT plasma are:

dr

dt
1rS ]u

]r
1
2u

r D50,

du

dt
52

1

r

]P

]r
, ~A1!

CvTr
d

dt
ln

T

rg21 5Q,

whered/dt5]/]t1u]/]r is the Lagrangian derivative.
An ideal gas equation of state withg55/3 is assumed.

The pressure is thus given byP5 2
3CvTr, where

Cv53kB/mi .
The source termQ, which includes electron heat con-

duction, bremsstrahlung losses, and the energy deposited by
thea-particles, is given by

Q5
1

r 2
]

]r S r 2k0T
5/2

]T

]r D2A0r
2T1/21eaS•n, ~A2!

wherek051.1•1019 erg/keV7/2 cm s,A052.8•1023 cm5/gr s3

keV1/2, andea53.5 MeV.
The a-particles transport is described in the present

model by a one group diffusion equation for the density
n(r ,t) of the particles:

]n

]t
5

1

r 2
]

]r
r 2D

]n

]r
2S•n1Sa . ~A3!

The rhs of this equation includes a diffusion term with the
diffusion coefficientD5D̃T3/2/r; an absorption term~the
slowing down of thea-particles is described in the one-
group model by an effective absorption! with the absorption
coefficient(5C̃er/T

3/2 whereC̃e is constant; and a source
termSa5^sv&(r/2mi)

2 where^sv& is the fusion cross sec-
tion. The exact dependence of^sv& on the temperature is
taken into account, as given in Ref. 18. The absorption of the
a-particles appears as an energy source in the last term of
Eq. ~A2!.

If a self-similar solution to Eqs.~A1!–~A3! does exist,
then all the physical quantities can be described by a sepa-
ration of variable ansatz of the form:

r~r ,t !5r0~ t !•g~j!,

T~r ,t !5T0~ t !•p~j!,
~A4!

u~r ,t !5Ṙ~ t !•jU~j!,

n~r ,t !5n0~ t !•n~j!,

wherej5r /R(t), andṘ5dR/dt. r0, n0, T0, andṘ are called
the scales of the corresponding hydrodynamic variables, and
g, p, U, andn are the spatial distribution functions.

Substituting the separation of variables ansatz~A4! in
the partial differential Eqs.~A1!–~A3!, a set of ordinary dif-
ferential equations for the spatial,j, dependence is obtained,
provided that no time dependent terms are left in the equa-
tions. This requires that the following terms be time indepen-
dent.

a15
A0

CV

r0R

T0
1/2Ṙ

, a25
k0

CV

T0
5/2

r0R•Ṙ
, a35

C̃eea

CV

n0R

T0
5/2Ṙ

,

a45D̃
T0
3/2

r0R•Ṙ
, a55

^sn&T0

mi
2

~r0R!2

n0R•Ṙ
,

a65C̃e

r0R

T0
3/2
•Ṙ

, a75
Ṙ2

c0
2 ,

where c0
25 2

3CVT0 . An additional requirement isẊR/
XṘ5const, whereX stands for the hydrodynamic scalesr0,
n0, T0, andṘ. The existence of a solution~beside the trivial
constant solution! for these equations is nota priori guaran-
teed since the number of conditions to be satisfied is larger
than the number of variables. Notice that theai terms depend
on r0, n0, andR only through the termsr0R andn0R; it is
found that one nontrivial solution does exist:

r0R5const, n0R5const, T05const, Ṙ5const.
~A5!

The spatial profiles of the self-similar solution are then de-
rived by numerically integrating the ordinary differential
equations for the spatial distribution functionsg~j!, p~j!,
U~j!, and n~j! with the appropriate boundary conditions.
These ordinary differential equations can be shown to have a
singularity on the lineU1C51, whereU is defined by Eq.
~A4! andC is defined similarly by:

c5Ṙ•jC~j! where c5S ]P

]r D
T

1/2

5
2

3
CVT.

It should be noticed here that the singularity line is deter-
mined by the sound velocity in constant temperature and not
the adiabatic sound velocity that was shown to determine the
singularity line of the Neudachin and Sasorov self-similar
solution.11,12This difference arises from the fact that the so-
lution of Neudachin and Sasorov does not include any con-
duction mechanisms which tend to keep a smooth tempera-
ture profile. The lineU1C51, called the sonic line,
describes the points where small perturbations travel with the
same velocity as the profile stretch velocityjṘ at the same
point. A point j0 that is under the sonic line
(U(j0)1C(j0),1) cannot hydrodynamically influence the
conditions atj.j0.

It can be shown that the boundary conditions imply that
the self-similar solution is above the sonic line atj50 and is
under the sonic line atj51. Hence, the self-similar solution
must cross the sonic line. This cross of the sonic line is done
at the discontinuity of the shock wave and thus the self-
similar solutions are supersonic behind the shock and are
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sub-sonic ahead of it. The positionjs of the shock is deter-
mined by the boundary conditions and, as shown in the text,
for given boundary conditions, there exist two solutions—the
left branch solution in whichjs51 and the right branch so-
lution in whichjs,1. In the Neudachin and Sasorov analytic
solution, however, there were no conduction mechanisms
and therefore the front was always lead by a shock~js51!.
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