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SUMMARY

Suppressive drug interactions, in which one antibi-
otic can actually help bacterial cells to grow faster
in the presence of another, occur between protein
and DNA synthesis inhibitors. Here, we show that
this suppression results from nonoptimal regulation
of ribosomal genes in the presence of DNA stress.
Using GFP-tagged transcription reporters in Escher-
ichia coli, we find that ribosomal genes are not
directly regulated by DNA stress, leading to an imbal-
ance between cellular DNA and protein content. To
test whether ribosomal gene expression under DNA
stress is nonoptimal for growth rate, we sequentially
deleted up to six of the seven ribosomal RNA
operons. These synthetic manipulations of ribosomal
gene expression correct the protein-DNA imbalance,
lead to improved survival and growth, and com-
pletely remove the suppressive drug interaction. A
simple mathematical model explains the nonoptimal
regulation of ribosomal genes under DNA stress as
a side effect of their optimal regulation in different
nutrient environments. These results reveal the
genetic mechanism underlying an important class
of suppressive drug interactions.

INTRODUCTION

Drug combinations can be an important tool for studying biolog-

ical systems and revealing relationships between different

cellular processes (Keith et al., 2005; Lehár et al., 2008, 2007;

Tsui et al., 2004). The interaction between two drugs can be

classified as additive, synergistic, or antagonistic according to

their combined effect being equal, greater, or less than that ex-

pected based on their individual effects, Figure 1A (Bliss, 1939;

Loewe, 1928, 1953; Pillai et al., 2005). Much attention has been

given to synergistic drug combinations due to their increased

potency. Antagonism, however, may have an advantage in

slowing down and even reversing the evolution of resistance
(Chait et al., 2007; Hegreness et al., 2008; Michel et al., 2008;

Yeh et al., 2006).

A particularly strong kind of antagonism, termed ‘‘suppres-

sion,’’ occurs when the combined inhibitory effect of two drugs

isnot onlyweaker than the expectedadditivesum,but alsoweaker

than the effect of one of the drugs alone (Figure 1A; Pillai et al.,

2005). We have previously reported that in the presence of a

DNA synthesis-inhibiting antibiotic, the addition of a protein

synthesis inhibitor increases the steady state growth rate of

Escherichia coli (Figure 1B) and Staphylococcus aureus (Chait

et al., 2007; Yeh et al., 2006). Many different pairings of DNA

synthesis and translation inhibitors show this suppressive drug

interaction (Yeh et al., 2006; see examples in Figures 1B and S1

available online), indicating that these interactions result from the

effect of the drugs on bacterial physiology rather than from direct

chemical interaction between the drugs. Considerable recent

work has advanced our understanding of the effects of individual

antibiotics on gene expression and cellular physiology (Brazas

and Hancock, 2005; Davies et al., 2006; Drlica et al., 2008; Fajardo

and Martinez, 2008; Goh et al., 2002; Hoffman et al., 2005; Kohan-

ski et al., 2007, 2008; Kolodkin-Gal et al., 2008; Linares et al., 2006;

Mason et al., 1995; Mesak et al., 2008; Piddock et al., 1990; Shaw

etal., 2003;Yim etal., 2006; Yim etal., 2007),but the effects ofdrug

combinations are less well understood and the mechanism that

underlies suppressive drug interactions remains unknown.

It has been argued that many aspects of bacterial physiology

have evolved to be ‘optimal’ - namely to maximize growth rate in

a given condition (Dekel and Alon, 2005; Ibarra et al., 2002;

Liebermeister et al., 2004). When protein synthesis inhibitors

are added to DNA synthesis inhibitors, however, the cells actu-

ally grow faster. Thus, the overall rate of protein synthesis under

DNA stress appears to be above the optimal value for maximum

growth. This overall rate of protein synthesis is primarily deter-

mined by the number of ribosomes per cell, which is known to

be tightly controlled (Gralla, 2005; Keener and Nomura, 1996;

Moss, 2004; Paul et al., 2004). Precise regulation of ribosome

synthesis is crucial for maximizing growth: under-production of

ribosomes causes ineffective use of cellular resources, while

over-production leads to an excess use of resources for protein

synthesis at the expense of other cellular processes (Gralla,

2005; Keener and Nomura, 1996; Levy et al., 2007; Paul et al.,

2004). As a result, in any particular environment, there exists
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Figure 1. Suppression of DNA Synthesis Inhibitors by Translation Inhibitors Suggests the Hypothesis that Ribosomal Genes Are Not Opti-

mally Regulated under DNA Stress

(A) Minimal Inhibitory Concentration (MIC) lines in the two-dimensional concentration space of two drugs. Two drugs are defined to interact additively if their

combined effect is constant along linear lines of fixed total dosage (Loewe, 1928). Synergy and antagonism are defined as negative or positive deviations

from this null line. A particularly strong type of antagonism—suppression—characterizes drug pairs whose combined effect is weaker than that of one of the drugs

alone (magenta line).

(B) Suppressive interaction is seen in measurements of growth rates (gray levels) and MIC line (magenta) in a two-dimensional gradient of the translation inhibitor

spiramycin (SPR) and the DNA synthesis inhibitor trimethoprim (TMP, inhibitor of DNA synthesis through folic acid deficiency). In the absence of DNA synthesis

inhibitor (black line), growth rate is maximal without translation inhibition (black triangle) and reduces monotonically with the level of translation inhibitor. In

contrast, at fixed finite concentration of DNA synthesis inhibitor (red line), growth rate increases initially as the translation inhibitor concentration increases, reach-

ing a maximal value (red triangle) at intermediate translation inhibition level.

(C) Schematic expectation for growth rate as a function of ribosomal gene expression in absence (black line) or presence (red line) of an antibiotic. Arrows show

possible ribosomal gene expression regulation in response to antibiotic addition. The comparison of panels (B) and (C) suggests the hypothesis that a nonoptimal,

too high ribosome level in response to DNA synthesis inhibitors may cause this suppressive drug interaction. MICs for antibiotics are summarized in Table 1.
an optimal level of ribosomes that maximizes the bacterial

growth rate (Figure 1C). The observation that, under DNA stress,

reduction in protein synthesis allows faster growth suggests that

ribosome level is not optimally regulated in these conditions.

The rate of ribosome synthesis in E. coli is determined by the

transcription rate of the ribosomal RNA operons (rrn operons;

Keener and Nomura, 1996; Paul et al., 2004), which code for the

three different ribosomal RNAs. Feedback mechanisms at the

level of translation adjust ribosomal protein synthesis to stoichio-

metrically match rRNA production (Keener and Nomura, 1996).

The standard E. coli lab strain K12 MG1655 has seven almost

identical copies of the rrn operons, which are among the most

highly transcribed loci in the genome. Multiple copies are needed

because the maximal transcription rate from a single rrn operon is

insufficient for the ribosome synthesis required at high growth

rates (Condon et al., 1995; Stevenson and Schmidt, 2004).
708 Cell 139, 707–718, November 13, 2009 ª2009 Elsevier Inc.
The rrn operons are regulated to achieve maximal growth in

different nutrient environments. The levels of factors that reflect

intracellular levels of resources such as amino acids and energy,

including nucleoside triphosphates (NTPs), guanosine penta-

phosphate and tetraphosphate (collectively referred to as

ppGpp), affect rrn transcription (Cashel et al., 1996; Dennis

et al., 2004; Gaal et al., 1997; Keener and Nomura, 1996; Paul

et al., 2004; Schneider et al., 2002; Schneider and Gourse,

2004). Overproduction of protein depletes these resources and

thus downregulates ribosome synthesis (Gralla, 2005; Paul

et al., 2004). In many environmental conditions, this negative

feedback loop is able to maintain ribosome concentration near

its optimal level (the level that maximizes growth rate); in partic-

ular, ribosome synthesis is kept high in nutrient-rich environ-

ments and is shut down as a consequence of nutrient starvation

(Cashel et al., 1996). However, it is unclear if the regulation of
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Figure 2. DNA Synthesis Inhibitors Lead to Increased Cell Size and Protein-DNA Ratio

(A) Microscopy images of DAPI stained (cyan) E. coli cells growing in absence of antibiotics (Ø) and in presence of translation inhibitor TET and DNA synthesis

inhibitors NAL and TMP. Scale bar, 10 mm. DNA synthesis inhibitors lead to a mixed population of cells that are larger and contain only one or few nucleoids (white

arrows). A small fraction of cells has no nucleoid (black arrows).

(B) Histograms of cell lengths. Mean cell size and variability increases in presence of DNA synthesis inhibitors but not in presence of translation inhibitors.

(C) Mean total protein per cell (measured by a variant of the Lowry assay) in presence of different antibiotics normalized to no drug control. All antibiotic concen-

trations are tuned to achieve the same normalized growth rate (�0.35). See Experimental Procedures.
ribosome synthesis leads to optimal expression levels (maximal

growth) under all stress conditions, and in particular under DNA

stress (Figure 1C).

The observation that, under DNA stress, inhibition of protein

synthesis actually increases the rate of cellular growth suggests

that the number of ribosomes per cell in these conditions is too

high. Overexpression of ribosomes under these conditions

would lead to an inefficient use of cellular resources and a growth

rate that is lower than could be maximally achieved. Here, we

test the hypothesis that the rate of ribosome synthesis in bacteria

is nonoptimal under DNA stress, and that this nonoptimality

causes the suppressive drug interactions in which translation

inhibitors allow faster growth under DNA synthesis inhibition.

We address this hypothesis by measuring cell composition,

morphology and gene expression changes in response to antibi-

otics, by genetically manipulating ribosome synthesis, and by

using a theoretical analysis of resource allocation in the cell.

RESULTS

Protein-DNA Ratio Is Skewed under DNA Stress
We first examined the changes in cell morphology and composi-

tion that result from treating cells with DNA synthesis inhibitors.

These inhibitors cause DNA damage and trigger the SOS

response, including expression of the cell division inhibitor sulA
(Huisman and D’Ari, 1981; Mesak et al., 2008; Walker, 1996).

This prevents cell division before chromosome replication is

completed (Huisman and D’Ari, 1981), leading to an increased

average cell size (Walker, 1996) and cell size variability, in partic-

ular at sub-inhibitory antibiotic concentrations where exponen-

tial growth occurs at a reduced rate (Figure 2A,B). The increased

cell size under DNA stress correlates with an elevated average

amount of protein per cell (Figure 2C; measured by a modified

Lowry assay, Experimental Procedures). Cellular DNA, however,

is typically still restricted to only one or two nucleoids (Figure 2A)

and, with increasing concentration of DNA synthesis inhibitor,

the mean DNA content decreases per volume and even per cell

(Georgopapadakou and Bertasso, 1991). The ratio of protein

to DNA therefore significantly increases in the presence of

DNA synthesis inhibitors. We hypothesized that this imbalance

could be caused by excessive production of ribosomes in the

cell, leading to overproduction of proteins and thus to reduced

growth rates. We therefore examined whether and how ribo-

some synthesis is regulated in response to DNA synthesis

inhibitors.

Ribosomal Gene Expression Is Not Specifically
Regulated by DNA Stress
We used strains from a genome-wide GFP transcription reporter

library (Zaslaver et al., 2006, 2004) to measure changes in the
Cell 139, 707–718, November 13, 2009 ª2009 Elsevier Inc. 709



expression level of promoters from almost 200 E. coli genes, rep-

resenting key cellular functions including DNA stress response,

metabolism and ribosome regulation and synthesis (Table S1).

We obtained high time resolution measurements of optical

density and GFP fluorescence of cultures growing in the pres-

ence of different antibiotics at a range of concentrations. We

focused on measurements during exponential growth phase

since our main interest in this work is to understand the combined

effects of drugs on steady state growth. Growth rates (g) were

determined from the increase in optical density over time (OD,

Figure 3A). Changes in gene expression level (g) were defined

as the effect of the drug on the average GFP signal per OD during

exponential phase (g = [GFP/OD] / [GFP/OD]no drug; Figure 3A and

Experimental Procedures). By repeating the measurement at

a range of drug concentrations, we determined expression level

changes in response to antibiotics as a function of growth

inhibition (see example for trimethoprim (TMP) in Figure 3B;

antibiotics used in this study are summarized in Table 1). As

expected, most SOS response genes were upregulated in

response to DNA stress caused by any of three different DNA

synthesis inhibitors (TMP, Figure 3B; ciprofloxacin [CPR] and

nalidixic acid [NAL], Figure S2). On the other hand, most ribo-

somal genes were downregulated in response to these DNA

synthesis inhibitors (Figures 3B, 3C, and S2). Consistent with

the downregulation of ribosomal genes, the ppGpp-regulated

ribosome inactivator gene rmf (Izutsu et al., 2001) was upregu-

lated in response to TMP (Figure 3B).

How much are ribosomal genes downregulated under DNA

synthesis stress? Ribosome production is normally reduced

when the growth rate of the cell is reduced (Bremer and Dennis,

1996), but it is possible that the inhibition of DNA synthesis may

also have a more specific effect on ribosome synthesis. To

distinguish between nonspecific (growth-mediated) and specific

effects of DNA synthesis inhibition on growth, we compared the

change in expression of ribosomal genes in the presence of anti-

biotics that inhibit DNA synthesis to the change seen when

growth rate is reduced using a poor growth medium. We found

that, for equivalent reductions in cellular growth rate caused by

these two mechanisms, the degree to which ribosomal gene

expression is downregulated is essentially identical (Figures 3C

and 3D). Thus, we see no evidence for specific regulation of ribo-

somal expression by DNA stress.

While DNA synthesis inhibitors did not specifically regulate

ribosome production, the translation inhibitors spiramycin

(SPR) and tetracycline (TET) elicit an upregulation of ribosomal

gene expression (Figure 3D) which counters the effect of

these drugs, consistent with previous studies (Fraenkel and

Neidhardt, 1961; Kurland and Maaløe, 1962; Schneider et al.,

2002). We next asked how this upregulation of ribosomal genes

in response to protein synthesis inhibitors is affected by the pres-

ence of DNA synthesis inhibitors. We measured the regulation

of 80 promoters including nine that control ribosomal genes

(Table S1) in a two-dimensional concentration matrix of TMP

and SPR (Experimental Procedures). For each promoter, we

obtained its fold change in expression level as a function of the

two drug dosages (Figures 4A and S3; Experimental Procedures;

Kaplan et al., 2008; Tsui et al., 2004). We found that ribosomal

gene expression levels in the presence of TMP are lower than
710 Cell 139, 707–718, November 13, 2009 ª2009 Elsevier Inc.
in its absence for any SPR level (Figure 4A) and the upregulation

of ribosomal genes by SPR is significantly delayed (occurs at

higher SPR concentrations) under TMP stress (arrow in Fig-

ure 4B). Consequently, the increase in growth resulting from

the addition of a translation inhibitor in the presence of a DNA

synthesis inhibitor occurs without substantial increase in ribo-

some production.

This delayed response allows a translation inhibitor to

substantially reduce overall protein synthesis and restore the

protein-DNA ratio to near its normal value (Piddock et al.,

1990), plausibly explaining the ability of translation inhibitors to

increase the survival and growth of cells suffering DNA synthesis

inhibition. Hence, the results discussed so far are consistent with

the hypothesis that the ribosome synthesis rate is not optimally

controlled under prolonged DNA stress; that is, it is not suffi-

ciently downregulated to maximize cellular growth rate. But

how can we test this hypothesis more directly? The hallmark of

nonoptimality is the possibility for improvement: if cellular

production of ribosomes is indeed nonoptimal under DNA stress,

we should be able to manipulate it to increase cellular survival

and growth.

Manipulating Ribosome Synthesis Increases Growth
Rate and Survival in the Presence of DNA Synthesis
Inhibitors
To test whether direct manipulation of ribosome levels affects

growth and survival in the presence of DNA synthesis inhibitors,

we measured responses to antibiotics in strains that are engi-

neered to decrease or increase ribosome synthesis. Following

previous work (Asai et al., 1999; Condon et al., 1993), we con-

structed strains in which up to six of the seven rrn operons

were incrementally deleted (designated D1, D2, D3, D4, D5,

and D6; Experimental Procedures; Table S2; no plasmid-borne

rrn operons were added to these strains). Our construction

method removes the selection marker linked to each of the rrn

operon deletions, allowing a direct comparison of the physiology

of these strains with wild-type (Experimental Procedures). The

relationship between the number of rrn operons and ribosome

levels is not necessarily linear, since feedback regulation of

ribosome synthesis partially compensates for deletions by

increasing the expression of the remaining rrn operons (Condon

et al., 1993). Nevertheless, ribosome levels and the rRNA

concentration – an upper bound for ribosome level – is reduced

by deleting rrn operons, particularly in rich growth media where

rrn operon transcription rates are close to saturation and cannot

be increased much further (Asai et al., 1999; Condon et al., 1993).

We also examined strains deleted for the genes relA and spoT;

these double-deletion mutants are devoid of ppGpp, a key nega-

tive regulator of ribosome synthesis (Xiao et al., 1991), and thus

show increased rrn expression (Barker et al., 2001; Bartlett and

Gourse, 1994). The relA spoT deletion strain has a longer lag

time for the transition from stationary phase to exponential

growth and a slightly reduced steady state growth rate

(Figure S16; Gaal and Gourse, 1990).

We measured growth rates of these modified strains in normal

conditions as well as under conditions where different antibiotics

were added to the cultures. In the absence of antibiotics, the

wild-type strain grows faster than all mutants with altered
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Figure 3. Ribosomal Gene Expression Is Downregulated under DNA Stress Only as Much as in the Normal Physiological Response to Slow

Growth

(A) Example data demonstrating measurement of drug effect on growth rate and transcription reporters. Optical Density (OD) and GFP expression from various

promoters (shown, as an example, is the promoter of lexA – the master regulator of the SOS response) are measured as a function of time for various drug concen-

trations (shown, 0, 0.5 and 1 mg/ml TMP). Top: growth rates are defined by linear regression (green lines) to the OD curves (black). Bottom: Expression level g (green

lines) is defined as GFP fluorescence intensity per OD, averaged over an OD range of exponential growth (shaded region) and normalized to no drug control.

(B) Normalized expression levels 3x of 110 promoters in E. coli as a function of growth rate in various concentrations of TMP. For each promoter x, 3x is defined as

expression level gx, normalized to the median expression level of all promoters <g> (Experimental Procedures). SOS response promoters are upregulated (black

triangles). Most ribosomal promoters are downregulated (orange squares) consistent with the upregulation of the ribosome inactivator rmf (black crosses).

Random scatter added to growth rate to enhance visibility.

(C) Top: Cumulative distributions of normalized expression levels 3x showing downregulation of ribosomal genes (orange) relative to all other promoters (gray) at

a fixed concentration of TMP (normalized growth rate �0.49). Bottom: a similar regulation is seen with no drug when the same change in growth rate is achieved

by changing the carbon source from glucose to glycerol.

(D) Mean normalized expression level of ribosomal promoters 3ribos as a function of normalized growth rate for different DNA synthesis inhibitors (CPR, NAL, TMP;

red), translation inhibitors (SPR, TET; blue), and in growth media with different carbon sources (glucose, galactose, glycerol; gray). Inset: 3ribos values at normalized

growth rate of approximately 0.45 (panel [D], gray region); error bars show SEM. Ribosomal promoters are upregulated in response to translation inhibitors and

downregulated in presence of DNA synthesis inhibitors. This downregulation, however, is similar to the growth-rate dependent downregulation that results from

a change of carbon source (gray horizontal line).
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ribosome synthesis; genetically increasing or decreasing ribo-

some synthesis leads to reduced growth rates (Figure 5A). This

observation confirms previous results (Asai et al., 1999) and is

in agreement with the idea that ribosomal synthesis is optimally

regulated to maximize growth in the absence of stress (Gralla,

2005; Paul et al., 2004).

In DNA stress conditions, however, the picture is profoundly

different (Figures 5A, S4A, and S4B). As expected, all strains

grow more slowly under DNA stress than in a stress-free environ-

ment (Figures 5A, CPR curve lower than no-drug curve). But, in

the presence of the DNA synthesis inhibitors CPR and NAL,

the strain with maximal growth is not the wild-type, but rather

a strain with reduced ribosome synthesis (D5 at the drug concen-

tration shown in Figures 5, S4A, and S4B). Complementing the

deletion strains with a plasmid expressing one of the rrn operons

(rrnB), partially revokes the increase in growth of these deletion

mutants under DNA stress, confirming that this phenotype is

Table 1. Antibiotics Used in This Study, Abbreviation, MIC in the

Wild-Type MG1655 Strain, and Main Mode of Action

Antibiotic Abbreviation

MIC in LB

(mg/ml)

MIC in M9

(mg/ml) Mode of action

Ciprofloxacin CPR 0.012 0.012 DNA gyrase

Nalidixic acid NAL 6 6 DNA gyrase

Trimethoprim TMP 0.42 1.5 Folic acid

synthesis

Spiramycin SPR 192 120 Protein

synthesis, 50S

Tetracycline TET 1.5 1.5 Protein

synthesis, 30S

Nitrofurantoin NIT 5 5 Multiple

mechanisms
712 Cell 139, 707–718, November 13, 2009 ª2009 Elsevier Inc.
directly related to the reduction in rrn operons (Figure S13). Coin-

cident with their increased growth rate compared to wild-type,

the deletion stains also have a closer to normal cell size under

DNA synthesis inhibition (Figure S5). Thus, in the presence of

DNA synthesis inhibitors the expression of rrn genes in the

wild-type appears to be higher than optimal.

We next tested if optimizing ribosome synthesis also allows

cells to tolerate higher concentrations of DNA synthesis inhibi-

tors. We determined changes of the minimal inhibitory concen-

tration (MIC) in the rrn deletion mutants for a range of antibiotics

(Experimental Procedures). Indeed, as we delete rrn operons we

see an incremental increase in MIC for the DNA synthesis inhib-

itors CPR and NAL (TMP behaves differently in this assay; see

below), compared to no change or even a decrease for antibi-

otics with other modes of action (Figure S4F).

In principle, the increased MIC for DNA synthesis inhibitors

could be an indirect effect caused by the lower growth rate of

the mutants with rrn operon deletions. To discriminate between

such general growth rate effects and the specific effect of modi-

fied ribosomal expression in the rrn deletion strains, we reduced

the growth rate of the wild-type by changing the carbon source in

the growth medium, and asked if this change has a similar effect

on the MIC as the rrn operon deletions (Experimental Proce-

dures). We found that changing the growth rate in this way

does not lead to a detectable change in MIC for CPR and NAL,

but TMP shows a two-fold lower MIC when growth rate is

reduced to a level comparable to that of the D6 mutant (data

not shown). This allows us to rationalize the observation that,

unlike the case for CPR and NAL, the MIC for TMP is not

increased in the D6 strain (Figure S4F): the increased MIC due

to the reduction in ribosomal synthesis may be masked by the

reduction in MIC caused by the decreased growth rate. Overall,

our results show that strains with genetically reduced ribosome

synthesis survive better in the presence of DNA synthesis
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Figure 4. Upregulation of Ribosomal Promoters by Protein Synthesis Inhibitors Is Delayed under DNA Stress

(A) Color map of normalized expression level 3rpmE of ribosomal promoter rpmE in a two-dimensional concentration matrix (black dots) of DNA synthesis inhibitor

(TMP) and translation inhibitor (SPR). Other ribosomal promoters behave similarly, Figure S3. Dashed line, line of constant growth rate (isobole; g = 0.38).

(B) Relative change in expression level 3rpmE(SPR) / 3rpmE(SPR = 0) as a function of SPR concentration, at no TMP (TMP = 0, gray), and at a fixed TMP concen-

tration (TMP = 0.34 MIC, magenta). Upregulation requires higher SPR concentration in the presence of TMP (arrow). Error-bars in (B) were estimated from the

standard deviation of replicate measurements done on different days (see Figure S17).
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Figure 5. Wild-Type Regulation of Ribosomal Expression Level under DNA Stress Is Nonoptimal: Genetically Manipulating Ribosome
Synthesis Can Increase Survival and Growth

(A) Normalized growth rates of wild-type (WT) and strains with incremental deletions of one to six of the seven rrn operons as well as for DrelA DspoT strain, in rich

medium (LB) in the absence (black) and presence of the DNA synthesis inhibitor CPR (red). Lines, 4th order polynomial fit to guide the eye. Schematic on left: strain

D5 in which 5 of 7 rrn operons are deleted. Schematic on right: DrelA DspoT strain which is devoid of ppGpp, a key negative regulator of ribosome synthesis, while

other factors regulating ribosome synthesis remain. While wild-type expression level is optimized for maximal growth under no drug conditions, it is not optimized

for maximal growth under DNA synthesis inhibition: Reduced ribosome synthesis in rrn deletion strains increases growth.

(B) Sample data showing the growth curves (OD versus time) for WT (solid line) and D5 strain (dashed line) in no drug or under CPR at the concentration of (A).
inhibitors, and thus that the wild-type regulation of ribosome

synthesis is nonoptimal for growth in these conditions.

Reducing Ribosome Synthesis Removes
the Suppressive Drug Interactions between DNA
Synthesis Inhibitors and Translation Inhibitors
If nonoptimality in the regulation of ribosome synthesis under

DNA stress is the cause for the suppressive interactions between

inhibitors of DNA synthesis and translation (Figure 1), then these

suppressive drug interactions should disappear in the geneti-

cally altered strains. To test this prediction, we measured growth

rates of the wild-type and the strains with genetically altered

ribosome expression levels in a two-dimensional drug matrix of

a DNA synthesis and a translation inhibitor (Experimental Proce-

dures). Strikingly, we find that genetically reducing ribosome

synthesis reduces the magnitude of the suppressive drug inter-

action and can even remove it entirely. Indeed, in contrast to

the wild-type, the D6 strain shows an almost additive interaction

(linear MIC line in Figure 6A compared to nonmonotonic line in

6B; see also definition of drug interactions in Figure 1A). We

observed this phenomenon for different antibiotic pairs that

inhibit DNA synthesis and translation, for differently constructed
rrn deletion strains (Figure S12), and for strains grown in both rich

and minimal growth medium (Figures 6A, 6B, and S1). Further,

complementing the deletion strains with a plasmid expressing

one of the rrn operons (rrnB), partially restores the suppressive

interaction between the drugs (Figure S14). Together, these

results support the notion that the suppressive drug interaction

is caused by nonoptimal regulation of ribosome synthesis: the

reduced ribosome synthesis rate in the D6 strain is closer to

the optimal level for maximal growth rate under DNA stress

and, consequently, the addition of an antibiotic that inhibits

translation no longer has a beneficial effect.

Conversely, we tested whether impairing the downregulation

of ribosome synthesis can amplify suppressive drug interac-

tions. We can force ribosome synthesis in the presence of

TMP even further above its optimal level by using a relA spoT

deletion mutant. In this ppGpp-deficient mutant, the downregu-

lation of ribosome synthesis in response to TMP is impaired

since it cannot elicit the wild-type upregulation of ppGpp in

response to TMP (Khan and Yamazaki, 1972; Smith and Midgley,

1973). Indeed, we found that the impaired regulation of ribosome

synthesis in a relA spoT deletion mutant amplifies the suppres-

sive drug interaction between the DNA synthesis inhibitor TMP
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Figure 6. Genetically Optimizing Ribosome Synthesis Removes Suppressive Drug Interaction between Inhibitors of DNA Synthesis and

Translation

Growth rates (gray levels) and MIC line (magenta) of D6 (A), WT (B), and DrelA DspoT strain (C) in two-dimensional concentration matrices (black dots) of DNA

synthesis inhibitor (TMP) and translation inhibitor (SPR). The suppressive drug interaction (B) disappears when ribosome synthesis is reduced (A) and is amplified

when downregulation of ribosome synthesis is impaired (C). The disappearance of suppression is incremental with number of rrn deletions and does not depend

on the specific DNA synthesis or translation inhibitor used, Figure S1. (D) Quantified level of suppression in the three strains. The level of suppression S is defined

as S = (MICmax - MIC0)/ MIC0, where MICmax is the maximal TMP MIC over all SPR concentrations and MIC0 the TMP MIC in absence of SPR. Cultures grown in

rich medium (LB).
and the translation inhibitor SPR (compare Figure 6C to 6B). A

very similar effect is observed in a relA deletion mutant (Fig-

ure S7). The observation that increasing ribosomal expression

amplifies suppression while decreasing ribosomal expression

reduces it (Figure 6D) provides persuasive evidence that this

drug interaction is due to nonoptimal regulation of ribosome

expression.

A Simple Mathematical Model of Ribosome Synthesis
Regulation Captures Nonoptimal Response to DNA
Stress and Suppressive Drug Interactions
Why is ribosome synthesis so inappropriately regulated in

response to DNA synthesis inhibitors? To explore this issue, we

developed a coarse-grained mathematical model of ribosome

synthesis regulation in bacterial growth (Figure 7A and Supple-

mental Data). This model describes the interdependencies of the

cellular concentrations of DNA, proteins, ribosomes, resources,

and cellular growth at steady state. Resources enter the cell at

a fixed rate and are distributed between the production of

proteins, ribosomes and DNA. In the model, ribosome synthesis
714 Cell 139, 707–718, November 13, 2009 ª2009 Elsevier Inc.
is regulated based on the intracellular concentration of these

resources. We optimize this regulation function to maximize the

growth rate at different resource uptake rates, corresponding to

different nutrient environments in the absence of antibiotics.

We then assume that this same regulation function based on

intracellular resource concentrations also applies when antibi-

otics are present. The effect of antibiotics is modeled as a reduc-

tion in the rate of translation or DNA synthesis. We further assume

that a threshold amount of protein per replication origin must be

produced to initiate DNA replication and cell division (Donachie,

1968; Donachie and Blakely, 2003). For simplicity, we assume

in the model that the cellular protein concentration is constant

so that the cell size is proportional to the total amount of protein

per cell (this approximation may not be true in general). Impor-

tantly, most parameters that enter into the model are known or

fully constrained by experimental data (Bremer and Dennis,

1996; Table S3). This simple model quantitatively reproduces

the changes in cell composition and growth rate that have been

observed in different nutrient environments (Bremer and Dennis,

1996; Figure S6).
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Figure 7. Mathematical Model with Optimal Growth Rate-Dependent Regulation of Ribosome Synthesis Yields Nonoptimal Response to

DNA Synthesis and Thereby Suppression by Translation Inhibitors

(A) Schematic depiction of a very simplified model of bacterial growth capturing resource allocation to DNA, ribosomes and proteins. Ribosome synthesis is

assumed to be optimally regulated by resource concentration. See Supplemental Data for the complete mathematical model.

(B) Growth rate obtained from the model for WT, rrn operon deletions and relA spoT deletions in the absence of antibiotics (black line) and in the presence of DNA

synthesis inhibitor (red line), cf. Figure 5A.

(C) Change of total protein per cell under translation inhibition (blue) or DNA synthesis inhibition (red), cf. Figure 2C. Inset shows total protein per cell at g = 0.15.

(D) Normalized ribosomal expression level 3ribos (corresponds to ribosomal protein fraction h in the model, see Supplemental Data) as a function of growth rate

under reduced nutrient availability (gray), translation inhibition (blue), or DNA synthesis inhibition (red). Ribosome synthesis is similarly downregulated in response

to reduced nutrient availability or DNA synthesis inhibition and is upregulated in response to translation inhibition, cf. Figure 3D.

(E) Quantified level of suppression in the different strains, cf. Figure 6D. Parameters as in Table S3 with resource influx na = 15 h-1 which leads to a growth rate

g = 1.3 h-1 in absence of antibiotics, for details see Supplemental Data.
The model and its resource-based optimization of ribosome

production faithfully describes our key experimental observa-

tions and in particular leads to nonoptimal regulation under

DNA stress. Specifically, it correctly captures the up- and down-

regulation of ribosome synthesis in the presence of translation

and DNA synthesis inhibitors, respectively (cf. Figures 3D and

7D). As in our experimental results, this reduction in the level of

ribosomal synthesis under DNA synthesis inhibition is similar to

the reduction seen when growth is attenuated by nutrient depri-

vation (red versus gray lines in Figure 7D; compare to experi-

ments in Figure 3D). This reduction in expression of ribosomal

synthesis is insufficient, leading to a skewed protein-DNA ratio

(cf. Figures 2 and 7C) and to sub-maximal growth rate (cf.

Figures 5A and 7B). Importantly, this simple model also repro-

duces the suppressive drug interaction between DNA synthesis

and translation inhibitors, its attenuation as a result of rrn operon

deletions, and its amplification as a result of relA spoT deletions

(cf. Figures 6D and 7E).
DISCUSSION

We showed that ribosome synthesis is not specifically regulated

by DNA synthesis inhibiting drugs, leading to a skewed DNA to

protein ratio and sub-maximal growth rate. Genetically reducing

ribosome synthesis allows cells to grow faster under DNA stress.

Importantly, this genetic optimization of ribosome synthesis also

eliminates the suppressive drug interactions between protein

and DNA synthesis inhibitors. A simple mathematical model

proposes that optimal regulation of ribosome production based

on intracellular resource concentrations in normal conditions

can lead to nonoptimal resource allocation between DNA and

protein synthesis under DNA synthesis inhibition, and thereby

to decreased growth. This explanation, while fully consistent

with our data, does not exclude the possibility that other mech-

anisms contribute to the suppressive interactions between

DNA synthesis inhibitors and translation inhibitors. For example,

reduced protein synthesis leads to reduced growth rate and
Cell 139, 707–718, November 13, 2009 ª2009 Elsevier Inc. 715



thereby to a smaller number of replication forks, which ultimately

may reduce the impact of DNA synthesis inhibitors, especially

of gyrase inhibitors which cause double strand breaks and

cell death through oxidative stress (Dwyer et al., 2007; Kolod-

kin-Gal et al., 2008). Upregulation of drug efflux pumps may

also play a role (Poole, 2005).

Our result that regulation of ribosomal gene expression in

response to sustained DNA stress is not optimal for maximal

growth in laboratory conditions raises the question of whether

this response might be optimized for another goal or for other

more natural conditions. The lack of specific regulation of

ribosomal genes under DNA stress is particularly puzzling

given E. coli’s ability to specifically regulate genes through

the SOS response (Friedman et al., 2005; Michel, 2005; Rad-

man, 1975; Tippin et al., 2004). There are several ways in which

the observed lack of specific response to DNA stress could

actually be beneficial in natural conditions. First, it is possible

that in the natural environment in which the organism evolved,

DNA synthesis inhibition is usually encountered at the same

time as nutrient deprivation, removing the need for a specific

mechanism to downregulate protein synthesis (Cashel et al.,

1996; Gralla, 2005; Paul et al., 2004). Indeed, gene regulation

responses can exploit correlations between environmental

changes, even if they do not occur simultaneously (Mitchell

et al., 2009; Tagkopoulos et al., 2008). Second, it is possible

that DNA stress is usually short-lived in the natural environment,

and so the global response to DNA damage and the formation

of larger, filamentous cells could be optimized to ensure a

fast recovery when the stress is relieved (Guan and Burnham,

1992). Finally, it is possible that phenotypic variability between

cells, which increases under DNA stress (Figure 2A,B), plays

a role in the survival strategy under these conditions (Balaban

et al., 2004; Guido et al., 2007; Kussell and Leibler, 2005;

Pearl et al., 2008). In any case, while the lack of specific regu-

lation of ribosomal genes under DNA stress could be optimal in

some conditions, it is clearly nonoptimal in the laboratory

condition.

In summary, we showed that nonoptimal regulation of

ribosome synthesis is at the heart of the suppressive drug

interactions between protein and DNA synthesis inhibitors.

Understanding the underlying mechanism of the interaction

allowed us to genetically manipulate whether and to what extent

these two drug classes interact. More generally, these results

show that cellular systems, even those critical for growth and

survival, are not always optimally regulated, and that tight

optimal control in some conditions can lead to nonoptimal regu-

lation in other conditions. Such nonoptimal regulation may open

possibilities for new ways to manipulate cellular growth in the lab

and in the clinic.

EXPERIMENTAL PROCEDURES

Media, Strains, and Drugs

Experiments were conducted as indicated in rich Luria-Bertani (LB) broth or

M9 minimal medium with different carbon sources (glucose, galactose,

glycerol) at 0.4%. Glucose M9 was supplemented with 0.2% amicase. Drug

solutions were made from powder stocks, filter-sterilized, stored at �20�C in

the dark and added as indicated. All strains used were derived from E. coli

K-12 strain MG1655 (Supplemental Data and Table S2).
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Growth Rate and MIC Assays

Overnight cultures were diluted �2000-fold and grown on an automated

robotic system (Caliper) at 30�C with rapid shaking in 96-well microtiter plates

(Costar) containing 200 ml medium per well. Absorbance at 600nm (A600,

proportional to optical density OD600, proportionality constant 3.1) and GFP

fluorescence were recorded by a plate reader (Victor III or EnVision, Perkin-

Elmer) at intervals of �30 min for at least 24 hr, and background subtracted.

Growth rates were calculated using Matlab by linear regression of log(OD600)

(Matlab function ‘‘regress’’) during exponential growth (0.01 < A600 < 0.1).

The measurement error was evaluated as the 95% confidence interval of the

linear regression (error bars in Figure 5A). Growth was annotated as no data

if the regression error was greater than 20%. Also removed are some cases

where resistant mutants occurred, in particular for CPR and NAL; these

were identified by large variations between replicates and by no growth for

12 hr or longer followed by fast growth. Two-dimensional drug concentration

matrices were set up on one 96-well plate (11 3 8 format) or on four plates

(22 3 16 format) leaving one column per plate for controls. To reduce noise,

a smoothed function was fitted to the measured growth rates by using a

smoothing cubic spline, and linearly interpolated isoboles were plotted (Matlab

functions ‘‘csaps’’ and ‘‘contour’’).

MIC was defined as the lowest concentration at which background sub-

tracted A600 did not exceed 0.02 after 24 hr. MICs were first determined

crudely in logarithmic antibiotic concentration gradients with two-fold dilutions

and then more accurately with linear gradients ranging from zero to about two

times the MIC.

Gene Expression Assay

GFP reporter strains were grown in glucose M9 medium supplemented with

0.2% amicase. GFP background was subtracted as described (Zaslaver

et al., 2006). We defined the expression level as the mean GFP/A600 in the

interval 0.04 < A600 < 0.3, Figure 3A. Only promoters with a clearly detectable

GFP signal were used for analysis, reducing the total number to 110 promoters,

Figure 3B. Expression level changes g relative to the drug-free control were

normalized to the median expression level change <g> of all promoters in the

same drug environment. Changes in the median expression level of all

promoters reflect nonspecific effects such as pH changes or changes of the

reporter plasmid copy number. We verified that the effect of plasmid copy

number on the measured expression level is independent of the GFP promoter,

by comparing to strains in which the same GFP reporters were integrated into

the chromosome (Supplemental Data).

DNA and Protein Assay

Cultures were grown to OD600�0.2 in glucose M9 medium, DAPI stained

(5 mg/ml, 5 min), mounted on agar pads, and imaged (Figure 2A). Cell

lengths were measured manually using ImageJ (http://rsbweb.nih.gov/ij/) for

�100 cells in each condition (Figure 2B). To calculate protein per cell, we

combined 8 identical 200 ml cultures and determined the total protein concen-

tration using the DC protein assay (Biorad). Cell concentration was estimated

by colony plate count. We slightly over-estimate protein per cell because cells

devoid of DNA (less than 10% of cells) do not form colonies. Error bars in

Figure 2C represent the error N1/2 for the cell count N.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, three

tables, and seventeen figures and can be found with this article online at

http://www.cell.com/supplemental/S0092-8674(09)01315-4.
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