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SUMMARY

Regulatory conflicts occurwhen twosignals that indi-
vidually trigger opposite cellular responses are
present simultaneously. Here, we investigate regula-
tory conflicts in the bacterial response to antibiotic
combinations. We use an Escherichia coli promoter-
GFP library to study the transcriptional response of
many promoters to either additive or antagonistic
drug pairs at fine two-dimensional (2D) resolution of
drug concentration. Surprisingly, we find that this
data set can be characterized as a linear sum of
only two principal components. Component one,
accounting for over 70% of the response, represents
the response to growth inhibition by the drugs.
Component two describes how regulatory conflicts
are resolved. For the additive drug pair, conflicts are
resolved by linearly interpolating the single drug
responses, while for the antagonistic drug pair, the
growth-limiting drug dominates the response. Impor-
tantly, for a given drug pair, the same conflict resolu-
tion strategy applies to almost all genes. These
results provide a recipe for predicting gene expres-
sion responses to antibiotic combinations.

INTRODUCTION

Cells respond to signals present in their environment by altering

the transcription levels of their genes (Alberts, 2008; López-

Maury et al., 2008). Global gene regulatory responses to

changes in the cellular environment have been studied for

many different organisms and environments. In particular, tran-

scriptional responses to a wide range of specific signaling mole-

cules as well as more general signals such as nutrients, stress

conditions, and drugs have been characterized in great detail

(Camilli and Bassler, 2006; Davies et al., 2009; Dwyer et al.,

2007; Hughes et al., 2000; Kohanski et al., 2007, 2008, 2010;

Kolodkin-Gal et al., 2008; Lee et al., 2010; Mesak et al., 2010;

Shaw et al., 2003). In their natural environments, cells are usually

exposed to multiple signals simultaneously. Though the

responses of specific genes to combinations of signals have

been studied (Geva-Zatorsky et al., 2010; Kaplan et al., 2008;
Kuhlman et al., 2007; Setty et al., 2003), there has not been

a systematic genome-wide investigation into responses to

combined signals.

The number of possible combinations of signals a cell can be

exposed to is huge even if we consider only a relatively small set

of signals: For a set of N different signals, the number of pairwise

combinations scales as N2, while the number of possible combi-

nations of m signals scales as Nm. In contrast, the information

processing capabilities of the cellular machinery that has to

detect and respond to these signals are probably rather limited.

Hence, it is implausible that cells have evolved specific res-

ponses for each possible combination and each regulated

gene—it is more likely that their response to a combination of

signals is based on their responses to the individual signals. It

is therefore possible that relatively simple, general rules connect-

ing the cellular response to individual signals with the response

to a combination of signals may exist. This possibility is high-

lighted by a recent study that revealed that the temporal

response of 15 different protein levels in a human lung cancer

cell line to combinations of anticancer drugs is a linear superpo-

sition of the individual drug responses (Geva-Zatorsky et al.,

2010). However, to reveal general rules, these issues will need

to be explored in a range of different model systems, including

prokaryotes. Moreover, genome-wide studies of drug combina-

tion effects at fine 2D resolution of drug concentration will be

needed to achieve this goal. If it is indeed possible to identify

rules that describe how the response to a combination of signals

or drugs is determined by the responses to each of the individual

signals or drugs, this could be extremely helpful in understanding

complex cellular responses in situations such as apoptosis,

where many competing signals are often present (Gaudet

et al., 2005; Janes et al., 2005; Janes et al., 2006), and for the

rational design of combination therapy.

The general question we set out to address is how gene regu-

latory conflicts are resolved.We define a gene regulatory conflict

as a situation in which a gene is regulated in opposite directions

by two signals or drugs present in a combination. For example,

drug A might lead to the downregulation of a gene while drug

B leads to its upregulation (Figure 1A). The response to the

drug combination will certainly depend on the ratio of the two

drug concentrations, but there are many possibilities for how

the two responses could be combined. For example, cells might

linearly interpolate (‘‘average’’) the conflicting individual drug

responses (Figure 1B). Alternatively, they might respond to

only one of the drugs, e.g., the drug that is present at the higher
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Figure 1. How Do Bacteria Resolve Conflicts in

Gene Regulation Caused by Simultaneous Expo-

sure to Two Different Drugs?

(A) Schematic example for a conflict in gene regulation:

Promoter X is downregulated in response to drug A, but

upregulated in response to drug B. How is promoter X

regulated when the cell is faced with a combination of both

drugs A and B?

(B) In the combination of two drugs, cells may linearly

superpose the response to the individual drugs (‘‘averaged

response,’’ top row) or respond to only one of the drugs

while ignoring the presence of the other drug (‘‘prioritized

response,’’ middle row), depending on the concentration

ratio of the two drugs. In a prioritized response, both drugs

may affect the cell’s response equally (middle row), or one

of the drugs may have a stronger impact on the response

(‘‘biased response,’’ bottom row; the response is biased

toward drug A in the example shown). Downregulation is

indicated by white cell interior, upregulation by green.

(C) At the single-cell level, all cells may show the same

response to the drug combination (‘‘deterministic

response,’’ left), or different cells may randomly respond

primarily to only one of the drugs in the combination

(‘‘stochastic response,’’ right).
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effective dose (‘‘prioritized response’’ [Figure 1B]). The priori-

tized response may be biased, i.e., genes may respond exclu-

sively to one of the drugs even when it is only present at relatively

low dosage (Figure 1B) (Geva-Zatorsky et al., 2010). Finally, it is

not clear whether the entire population of cells will respond

uniformly to the drug combination: For example, individual cells

could decide stochastically to prioritize their response to either

one of the drugs (Figure 1C).

In bacteria, different antibiotics are known to elicit specific

gene regulation programs that often affect a considerable frac-

tion of the genome (Brazas and Hancock, 2005; Davies et al.,

2006; Fajardo and Martı́nez, 2008; Goh et al., 2002; Kohanski

et al., 2007, 2008; Linares et al., 2006; Shaw et al., 2003; Tsui

et al., 2004; Yim et al., 2007). We therefore expect that many

genes will be subject to regulatory conflicts in the presence of

multiple different antibiotics, making this a promising model

system for the investigation of conflict resolution in gene regula-

tion. We used fluorescent reporters in Escherichia coli to

measure the transcription of about 100 genes in response to

a complete 2D gradient of two different pairs of antibiotics,

which, at the level of growth inhibition, show additive and antag-

onistic drug interactions, respectively (Bliss, 1939; Chait et al.,

2007; Loewe, 1928, 1953; Yeh and Kishony, 2007). By simulta-

neously measuring the effect of the drugs on growth rate, we

separated drug-specific effects on gene expression from

nonspecific contributions through growth rate changes. We

then applied principal component analysis (PCA) to identify char-

acteristic ways in which cells respond to drug combinations.
Table 1. Antibiotics Used in This Study, Abbreviation, MIC of the

MG1655 E. coli Strain, and Main Mode of Action

Antibiotic Abbreviation MIC (mg/ml) Mode of Action

Trimethoprim TMP 1.5 Folic acid synthesis

Spiramycin SPR 120 Protein synthesis, 50S

Tetracycline TET 1.5 Protein synthesis, 30S
RESULTS

Antibiotic Combinations Lead to Gene Regulatory
Conflicts
To identify conflicts in gene regulation, we first investigated the

bacterial gene expression response to three different bacterio-

static antibiotics applied individually: trimethoprim (TMP), spira-
414 Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc.
mycin (SPR), and tetracycline (TET) (Table 1). This selection

allowed us to compare pairs of drugs with similar modes of

action (TET and SPR) and unrelated modes of action (TMP and

SPR). We used an automated robotic system and an E. coli

library of fluorescent transcriptional reporter strains (Shachrai

et al., 2010; Zaslaver et al., 2006, 2009), focusing on a

genome-wide sample of 103 promoters that represent key

cellular functions including metabolism, stress response, DNA

repair, and ribosome synthesis (Table S1). We simultaneously

measured changes in gene expression and growth rate across a

range of antibiotic concentrations. The robotic systemmeasured

optical density (OD) and GFP fluorescence at multiple time

points during exponential phase. We used antibiotic concentra-

tions that slow but do not completely stop growth, since ourmain

interest here is the cellular response in conditions where key cell

functions are not too severely impaired. The exponential growth

rate was obtained from the increase in OD over time (Figure 2A),

and gene expression level changes (g) were obtained from the

effect of the drug on the average GFP signal per OD during expo-

nential phase (g = [GFP/OD] / [GFP/OD]no drug) (Figure 2A and

Experimental Procedures). These simultaneous measurements

enabled us to compare the expression level of each promoter

in the presence of different drugs at the same level of growth inhi-

bition (Figure 2B).

When the responses of a given gene to different antibiotics are

compared, several qualitatively different cases appear: Some

promoters show no response to either of the two drugs; e.g.,

minC, which plays a role in cell division (Keseler et al., 2009),
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Figure 2. Gene Regulation Responses to

Pairs of Antibiotics Frequently Show

Conflicts

(A) Example data demonstrating measurement of

drug effect on growth rate and transcription

reporters. Optical density (OD) and GFP expres-

sion from various promoters (shown, as an ex-

ample, is the cspA promoter) are measured as

a function of time for various drug concentrations.

Shown are no drug (black), 65 mg/ml SPR (blue),

and 1.3 mg/ml TMP (red). Top: Growth rates are

defined by linear regression (green lines) to the OD

curves. Bottom: Expression level g (green lines) is

defined as GFP fluorescence intensity per OD,

averaged over an OD range of exponential growth

(shaded region) and normalized to no drug control

(thus g = 1 for the no drug control).

(B) Normalized expression levels (Ex) of example

promoters cspA, sodA, minC, and pheL as a

function of growth inhibition in various concentra-

tions of SPR (blue) and TMP (red). Growth inhibi-

tion is the fraction by which the growth rate in the

absence of drug is reduced. For each promoter X,

Ex is defined as expression level gx, normalized to

the median expression level hgi of all promoters in

the same drug concentration (Experimental

Procedures). The three larger filled points for cspA

correspond to the drug concentrations shown in

(A). The promoter cspA shows a clear regulatory

conflict for these two drugs. In contrast, sodA is

consistently upregulated in response to both

drugs, while pheL is only regulated in response to

TMP and minC shows no response to either drug.

Error bars correspond to two standard deviations

estimated from replicate measurements done on

different days (Experimental Procedures).

(C) Scatterplot of ETMP
x versus ESPR

x (changes in

expression at inhibition level indicated by light

magenta bands in B, g = 0.45–0.5, cf. red and blue arrows in B) for a genome-wide sample of promoters (Table S1). Promoters with regulatory conflicts (e.g., cspA,

magenta), are located in the gray quadrants. Promoters that respond to only one of the drugs (e.g., pheL, magenta) are located near the horizontal and vertical

dotted lines. Promoters showing the same qualitative response to both drugs (e.g., sodA, magenta), are located in thewhite quadrants. Note thatmany promoters

show conflicts for this drug pair.

(D) As (C) but for TET-SPR drug combination. Most promoters lie in the white quadrants, showing that conflicts occur less frequently for this drug pair. However,

some promoters show conflicts (e.g., slp and dnaX, magenta). Error bars in (B) correspond to two standard deviations estimated from replicate measurements

done on different days (Experimental Procedures).
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responds to neither TMP nor SPR (Figure 2B). Other promoters

respond to only one of the drugs, e.g., pheL, which plays a role

in amino acid biosynthesis (response exclusively to TMP) (Fig-

ure 2B). Promoters that respond to both drugs can show

a consistent response in which the sign of the regulation (up or

down) is the same for both drugs. For example, this is the case

for sodA, which plays a role in the oxidative stress response (Fig-

ure 2B). However, there are also promoters showing conflicting

responses: upregulated by one drug and downregulated by the

other (e.g., cspA, a major cold shock protein) (Figure 2B).

We next asked how frequent conflicting responses to antibi-

otic pairs are. To this end, we compared the gene regulation

responses to antibiotics at a fixed level of growth inhibition

(normalized growth rate g = 0.5) (Figures 2C and 2D and Table

S1). Looking globally at the gene expression response of all

promoters in our genome-wide sample, we found that conflicting

responses (in which the directions of gene regulation are oppo-

site) occur almost as often as consistent responses (in which
the direction of gene regulation is the same) for the TMP-SPR

drug pair (compare density of promoters in gray and white quad-

rants, respectively, in Figure 2C). In contrast, for the TET-SPR

pair, the majority of promoters show consistent responses to

both antibiotics, with a smaller number of promoters showing

conflicts (e.g., slp, dnaX) (Figure 2D). TET and SPR are both ribo-

somal inhibitors, though they act at different locations (Table 1),

while TMP acts through inhibition of folic acid synthesis (folA,

dihydrofolate reductase, DHFR). These observations are in

agreement with the simple expectation that drugs with different

modes of action might present more cases of conflicting

responses.

Different Promoters Show a Wide Range of Regulatory
Responses to Antibiotic Pairs
As gene expression responses to different antibiotics can differ

substantially (Figure 2C), we now face the question of how cells

respond when both drugs are present simultaneously. Even for
Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc. 415
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Figure 3. The Gene Regulation Response to Combinations of Two Antibiotics Is Largely Explained by Just Two Principal Components

(A) Schematic of experimental procedure for measuring gene expression responses to combinations of two antibiotics. 2D drug concentration gradients were set

up on 96-well plates (left). One promoter-GFP reporter strain was grown on each plate (middle). For each condition in the two-drug space, the expression level Ex

is obtained as in Figure 2, yielding the matrix of expression levels Ex of promoter X.

(B) Examples for different types of gene expression responses in 2D concentration gradients of TMP and SPR. Expression level Ex is shown in color code: Blue

indicates downregulation, red upregulation, and white no change in gene expression. The promoter cspA shows a conflicting response, sodA a consistent

response, minC no response, and pheL responds only to TMP (cf. Figures 2B and 2C). In these examples, the expression level in the drug combination lies

between the levels in the individual drugs, which is the case for most promoters. Responses of other promoters are shown in Figures S1 and S2. Drug

concentrations are in units of the minimal inhibitory concentration (MIC, see Table 1).

(C) Principal component analysis (PCA) is performed on the expression level matrices Ex, yielding the principal components (PCs) EI, EII,. The scores s1x ; s
2
x ;.

capture how strongly each PC contributes to the total response of promoter X (Experimental Procedures). Bar charts: Variance explained by the first five PCs for

drug combination of TMP-SPR (left bar chart) and TET-SPR (right bar chart). Most variability is explained by the first PC, but the second PC is also important.

Almost the entire data set is explained by the first three PCs, which thus capture the most typical features of the responses of all promoters.

Molecular Cell

Resolution of Gene Regulatory Conflicts
promoters that do not show regulatory conflicts, the response to

the drug combination is unclear: Do promoters that show no

response to the individual drugs (e.g.,minC [Figure 2B]) respond

to the combination? Do consistent responses, where a promoter

is, e.g., upregulated in response to both drugs alone, typically

lead to an amplified upregulation in the combination, as would

be the case if a ‘‘separation of variables’’ scenario applied
416 Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc.
(Kaplan et al., 2008)? To address these questions, we measured

the regulatory response of our genome-wide sample of pro-

moters to the simultaneous presence of two antibiotics. To

resolve the effects of different drug concentration ratios, we

set up 2D drug concentration matrices on 96-well plates and

determined growth rates and gene expression levels in these

conditions (103 3 96 = 9888 time curves) (Figure 3A and
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Experimental Procedures). We performed these measurements

for the antibiotic pair TMP-SPR, which triggers many gene regu-

latory conflicts (Figure 2C), as well as the antibiotic pair TET-

SPR, which has fewer conflicts (cf. Figures 2C and 2D). These

two drug pairs show different drug interactions (Bliss, 1939;

Loewe, 1928, 1953): While TET and SPR show an additive inter-

action, i.e., their effect on growth when combined is essentially

as if they were the same drug, the TMP-SPR combination shows

an antagonistic interaction, i.e., at high concentrations of one

drug, adding the other one has little effect on growth (Chait

et al., 2007; Yeh et al., 2006).

We observed a wide spectrum of gene expression responses

to the TMP-SPR combination (Figures 3B and S1). In general, the

level of promoter expression in response to a combination of

drugs lies between the expression levels it shows in the individual

drugs, whether the drug actions on the promoter are in conflict

(e.g., cspA in Figure 3B, hdeA and cysB in Figure S1A), are

consistent (e.g., sodA in Figure 3B, nhaA andpykF in Figure S1B),

or give no response (e.g.,minC in Figure 3B, tolC andmalZ in Fig-

ure S1C). For promoters that respond to only one of the drugs

when applied individually, the response to the drug combination

is usually similar to the response to this drug alone (e.g., pheL in

Figure 3D, serA and bioB in Figure S1D). The TET-SPR drug

combination shows broadly similar behavior (Figure S2).

The Complete Response to Antibiotic Combinations
Is Explained by Just a Few Principal Components
Our next goal was to identify general features of the response to

these drug pairs. We used PCA to analyze the response of our

genome-wide sample of promoters to the antibiotic pairs. PCA

exposes the main modes of responses by removing redundancy

and correlated data (Halabi et al., 2009; Jolliffe, 1986; Pearson,

1901); it represents the response of each promoter as a sum of

a few basic ‘‘principal component’’ (PC) modes of response. If

promoters respond in similar ways, the complete genome-wide

sample of Figure 3 could potentially be represented by only

few basic response modes.

We performed PCA on the gene expression response data

sets for the TMP-SPR and TET-SPR drug combinations sepa-

rately. In this analysis, we treated the expression levels

E1
x ;E

2
x ;.;E96

x at different points in the 2D drug concentration

space as variables (Figures 3A and 3C) and each different

promoter X as an observation (Experimental Procedures). For

both drug pairs, we find that almost all of the variability in the

data (97%) is explained by just three PCs, with the first one

capturing more than 70% of the variability, the second less

than 25%, and the third about 2% (Figure 3C). Each gene

expression response (Ex) to the drug combinations can therefore

be presented as a linear superposition of only a few PCs:

Ex = s1x,EI + s2x,EII + s3x,EIII +/ (where the same EI, EII, and EIII

are used for all promoters) (Figure 3C). This reduction in the

number of variables means that the complete response of

each promoter to the full 2D drug matrix can be specified by

just three numbers, or ‘‘scores’’—s1x ; s
2
x ; s

3
x—a great simplifica-

tion compared to the original representation, in which each

promoter’s response is described by the full set of expression

levels at 96 positions in the 2D drug concentration space

E1
x ;E

2
x ;.;E96

x (Figure 3A). Overall, this analysis revealed that
the gene regulation response to antibiotic pairs has a relatively

simple structure in that the responses of different promoters

are largely captured by just two or three numbers.

What is the biological meaning of the first PC? Since the drugs

affect growth rate, which in turn systematically affects gene

expression (Brauer et al., 2008; Bremer and Dennis, 1996; Fazio

et al., 2008; Gonzalez et al., 2002; Hua et al., 2004; Levy and

Barkai, 2009; Scott et al., 2010), we compared the different

PCs with the measured growth inhibition in the 2D drug treat-

ment. We found that for both drug pairs considered here, the first

PC (Figure 4A) tracks the growth rate contour in the 2D drug

concentration space (Figure 4B) remarkably precisely. Plotting

the first PC along lines of constant growth rate shows that it is

essentially constant along such growth rate isoboles (Figure 4C).

This finding implies that the first PC can be approximately written

as a function of only the growth rate: EI = F(g). This observation

strongly suggests that the first PC captures the physiologically

determined response to growth inhibition. Thus, for the two

combinations we have studied, a large part of the gene regula-

tion response to drug combinations is explained by growth inhi-

bition rather than the specific effects of the drugs.

To remove growth-rate-dependent regulation from our anal-

ysis, we analyzed expression level changes along fixed growth

rate isoboles in the two-drug space. To parameterize the posi-

tion along an isobole in a combination of two drugs, A and B,

we use a dimensionless measure—the ‘‘effective drug frac-

tion’’—which measures the relative contributions of the drugs

to growth inhibition (Experimental Procedures). This measure

equals zero when only drug A is present, one when only drug B

is present, and one-half when both drugs are present at concen-

trations leading to matched growth inhibition (Figure 4C). Using

this growth-independent presentation, we next focused on the

second PC as well as the response of individual promoters.

Cells Resolve Gene Regulatory Conflicts by Prioritizing
or Averaging
For both drug pairs, the second PC varies from negative to posi-

tive values along a growth rate isobole (Figures 5A and 5B). Such

a sign change in the expression level is the defining character-

istic of a regulatory conflict. Consequently, this observation

suggests that the second PC captures the general way in which

cells resolve gene regulatory conflicts for a specific drug pair.

Thus, it describes how promoters that are downregulated in

one drug but upregulated in the other respond to the simulta-

neous presence of both drugs at different ratios. The second

PC accordingly explains a larger fraction of the gene expression

response for the TMP-SPR combination (20%, Figure 3C), which

shows many conflicts (Figure 2C), than for the TET-SPR combi-

nation (11%, Figure 3C), which shows considerably fewer

conflicts (Figure 2D).

In the TMP-SPR combination, the second PC shows a rela-

tively sharp transition from a low to a high gene expression level

when TMP is increasingly replaced with SPR at fixed growth rate

(Figure 5A). This transition is not perfectly step-like, but occurs in

a relatively narrow region in the 2D drug concentration space,

dividing this space into two domains that show qualitatively

different responses. These are the characteristic features of

a prioritized response (cf. Figure 1B). In particular, the response
Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc. 417
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Figure 4. The First Principal Component of the Gene Regulation Response Captures the Effects of Growth Rate Changes

(A) First principal component (PC) of gene expression response to two-drug environments TMP-SPR (top) and TET-SPR (bottom). Dashed line: line of constant

growth rate (normalized growth rate g = 0.5). White region in top right: no data due to low growth rates (Experimental Procedures).

(B) Growth rate in two-drug environments TMP-SPR (top) and TET-SPR (bottom). Note similarity to corresponding first PC shown in (B).

(C) First PC along isobole g = 0.5 (dashed line in A and B) as a function of the ‘‘effective drug fraction’’ (see Experimental Procedures for formal definition). This PC

is approximately constant along isoboles, showing that the first PC simply captures a generic transcriptional response to growth rate change, which is drug

independent.
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to the drug combination is similar to the response to the drug that

has the stronger effect on growth at each given concentration

ratio. In contrast, in the TET-SPR combination, the second PC

along a growth rate isobole shows a much smoother transition,

well approximated by a straight line as TET is continuously re-

placed with SPR (Figure 5B)—the characteristic behavior of an

averaged response (cf. Figure 1B). The fact that the second

component captures most of the variability in the data indicates

that the solution of regulation conflicts for a given drug pair is

very similar in all promoters. Indeed, almost all promoters in

our genome-wide sample with clear gene regulatory conflicts

show the same characteristic resolution of these conflicts: In

TMP-SPR, 42 out of 44 promoters with clear regulatory conflict

show prioritization, and in TET-SPR all promoters with conflicts

show averaging (see Figures 5C, 5D, and S3). Resolution of regu-

lation conflicts is not promoter specific; it is similar across

different promoters genome-wide.

Response to Antibiotic Pairs Is Rarely Biased toward
Either of the Two Drugs
We next looked for individual promoters whose prioritized

responses are biased toward one of the drugs (cf. Figure 1B).

For the TET-SPR pair, there are no such biased responses, since
418 Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc.
gene regulatory conflicts are smoothly averaged for these drugs.

For the TMP-SPR pair, however, wemade use of the fact that the

expression level along a growth rate isobole is well fit by

a sigmoidal function for most promoters. The sigmoidal fit

defines a transition point (x0) for each promoter (Figure 5E, inset,

and Experimental Procedures). We found that the vast majority

of promoters transition near x0 = 1/2, where each of the drugs’

individual contributions to growth inhibition are equal (Figure 5E).

Thus, the relative impact of these drugs on growth inhibition

coincides with their relative impact on the gene expression

response; the cells primarily respond to the drug that inhibits

their growth more severely.

We did find a small number of promoters that show a regula-

tory response that is biased toward one of the drugs. In partic-

ular, a few promoters are almost fully biased toward TMP (bars

near x0 = 1 in Figure 5E), i.e., they show the response to TMP

even if SPR is present at concentrations that have a stronger

effect on growth. These promoters include hipB, which controls

a toxin-antitoxin system, and the promoters serC, aroH, pheL,

and serA (Figure S4), which all play a role in amino acid biosyn-

thesis (Keseler et al., 2009). The only promoter in our data set

that is biased toward SPR is that of the antitoxin dinJ. In

summary, these observations show that most promoters show



Figure 5. Bacteria Resolve Gene Regulatory Conflicts by Prioritizing Their Response to One of the Drugs or by Averaging the Responses

to the Individual Drugs

(A) Second PC of the global transcriptional response to TMP-SPR in color code (left panel). Blue indicates downregulation, red upregulation, and white no change

in gene expression. Dashed black line: growth rate isobole g = 0.5. The second PC shows a gene regulatory conflict and how it is resolved in the 2D drug

concentration space. Right panel: second PC along growth rate isobole g = 0.5. Note the nonlinear shape of the transition; dashed black curve, sigmoidal fit

(Experimental Procedures).

(B) As (A) but for TET-SPR. Note the linear shape of the transition in the right panel; dashed black curve, linear fit (Experimental Procedures).

(C) Expression levels of genes dnaK, cspA, osmC, and dps in 2D drug concentration space of TMP-SPR. Gene expression levels along the growth rate isobole

(dashed black line, normalized growth rate g = 0.5) are shown on the right. Magenta lines: sigmoidal fits (Experimental Procedures). Conflicts in gene expression

are resolved in a prioritized response, leading to a relatively sharp transition between the conflicting expression levels as TMP is continuously replaced with SPR

(cf. Figure 1B).

(D) As (B), but for different example genes ileX, dnaX, slp, and dps, which show conflicts in the 2D drug concentration space of TET-SPR. Magenta lines: linear fits

(Experimental Procedures). Conflicts in gene expression are smoothly averaged, leading to a linear transition between the conflicting expression levels

(cf. Figure 1B).

(E) Inset: Schematic of sigmoidal fits to curves from (A) and (C) with fit parameter x0 characterizing the position of the transition between the two different gene

expression responses. Histogram of fit results for x0 for drug combination of TMP-SPR is shown(Experimental Procedures). The distribution of x0 is narrowly

localized around 0.5, showing that the response of most genes is not biased toward either of the drugs (cf. Figure 1C), though a few genes are biased toward TMP

(bars near x0 = 1). Error bars correspond to two standard deviations estimated from replicate measurements done on different days (Experimental Procedures).
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an unbiased prioritized response (i.e., they respond to the drug

with the greater effect on growth), with the notable exception

of some genes in amino acid metabolism that respond almost

exclusively to the TMP signal.
A Few Promoters Show Combination-Specific
Responses to Antibiotic Combinations
The fact that most promoters show stereotypical behaviors

captured by the first two PCs enabled us to identify promoters
Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc. 419



Figure 6. A Few Promoters Show a Specific

Response to the Drug Combination inwhich

the Expression Level Does Not Lie in

between the Two Responses to the Indi-

vidual Drugs

(A) Scatter plot of scores of the third versus those

of the first PC for TMP-SPR drug combination.

While the third PC contributes relatively little to the

response of most promoters (cf. Figure 3C), it

plays an important role for a few promoters

(including lexA, slp, and glyA, highlighted in

magenta).

(B) Third PC in 2D drug concentration space of

TMP-SPR shown in color code. The third PC has

a clear peak in the drug combination. The few

promoters that show higher or lower expression

levels in response to the drug combination than in

response to either of the individual drugs are

captured by this component.

(C and D) Promoters lexA (C) and slp (D), which

have a relatively large third PC score (A), indeed

show lower (C) or higher (D) expression levels in

the drug combination. For glyA, see Figure S5A.
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that show responses to the two-drug environment that deviate

from this norm. To this end, we calculated the scores

s1x ; s
2
x ; s

3
x ;. of the different PCs for each promoter (Figure 3C).

These scores reflect how strongly each PC contributes to the

promoter’s response. Promoters with responses that are not

captured by the first two PCs have large scores for the higher

PCs, such as the third PC (Figure 6A). The third PC exhibits

a clear peak in the TMP-SPR drug combination, i.e., unlike the

first two PCs, it describes expression levels in the drug combina-

tion that do not fall between the expression levels in the indi-

vidual drugs (Figure 6B). This observation suggests that the third

PC captures the drug combination-specific response of pro-

moters whose expression levels in the drug combination lie

outside the range bounded by the expression levels in the indi-

vidual drugs. Indeed, promoters with a large score for the third

PC show such drug combination-specific responses (Figures

6C, 6D, and S5A).

An example is the lexA promoter, which controls transcription

of the master regulator of the DNA damage (‘‘SOS’’) response

(Walker, 1996). This promoter is upregulated in response to

TMP (Mesak et al., 2008; Walker, 1996) and slightly upregulated

in response to SPR, but shows no upregulation or even a slight

downregulation in the drug combination (Figure 6C). This obser-

vation could be explained by the idea that adding translation

inhibitors like SPR to TMP leads to a reduction in the amount

of DNA damage in the cell. Another interesting case is slp,

a promoter known to respond to starvation conditions (Keseler
420 Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc.
et al., 2009): slp is downregulated in

response to SPR and slightly downregu-

lated at higher concentrations of TMP,

but shows upregulation in a combination

of both drugs (Figure 6D). The fact that

this promoter is regulated by multiple

transcription factors (GadW, GadX, and

possibly MarA) suggests that such drug
combination-specific responses usually require the integration

of more than one regulatory input. Consistent with this view,

the glyA promoter, which shows a combination-specific res-

ponse (Figures 6A and S5A), is regulated by two different tran-

scription factors (PurR and MetR) (Keseler et al., 2009). This

view is further supported by the fact that the only promoter

that shows a combination-specific response to the TET-SPR

combination (uspA) (Figure S5B) is also regulated by two

different transcription factors. In summary, we found that only

a few promoters do not strictly follow the general rule set by

the first and second PCs, but instead show drug combination-

specific responses. These promoters often have multiple tran-

scriptional regulatory inputs. Identifying such genes and their

regulation may be important to advance our understanding of

cellular responses to drug combinations.

Increased Cell-to-Cell Variability in Gene Expression
Occurs at the Transition Point of a Prioritized Response
We have shown that cells can average the responses to indi-

vidual drugs in a drug combination (Figures 5B and 5D). How-

ever, this averaged response was observed at the population

level and could in principle be due to a stochastic response at

the single-cell level (Eldar and Elowitz, 2010; Gefen and Balaban,

2009; Gefen et al., 2008; Rotem et al., 2010) in which different

subpopulations of cells randomly show the response to either

one of the two drugs (cf. Figure 1C). To fully discriminate between

different possible response strategies to drug combinations
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Figure 7. Prioritized Response Coincides with Increased Cell-to-Cell Gene Expression Variability in the Drug Combination

(A) Top: GFP fluorescence from E. coli cells. In this example, GFP is driven by the cspA promoter. Magenta outlines show segmentation (Experimental

Procedures). Bottom: Histogramof GFP intensities per cell in TMP alone (left), SPR alone (right), and the combination of TMP-SPR (middle).While the distributions

of gene expression levels are unimodal in all conditions, a much wider distribution is observed when TMP and SPR are present simultaneously (blue arrows).

(B) Population averagemeasurements of expression level Ex (black circles) along growth rate isobole g = 0.5 as in Figure 5C, for promoters cspA, ileX, and glyA in

TMP-SPR drug combination. Black lines are sigmoidal fits (cf. Figure 5) except for glyAwhere black line shows cubic spline. Blue circles show variation coefficient

of GFP/cell along a similar growth rate isobole. The coefficient of variation (CV) is a measure of the relative cell-to-cell variability in gene expression and defined as

the empirical standard deviation of GFP/cell (shown in A) divided by its mean (Experimental Procedures). Blue lines are cubic splines. Gene expression cell-to-cell

variability peaks in drug combination near the point where a sharp transition between two different responses occurs.

(C) As (B) but for TET-SPR showing promoters rpmE, ileX, and glyA, which have regulatory conflicts in this drug combination. Note that gene expression cell-to-

cell variability does not peak in the drug combination.
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(Figure 1), we need to investigate cell-to-cell variability in gene

expression responses. To this end, we measured transcriptional

responses to drug combinations in single cells. Specifically, we

integrated ten GFP transcriptional reporters (Zaslaver et al.,

2006) into the E. coli chromosome to avoid noise caused by

plasmid copy number variability (Elowitz et al., 2002; Freed

et al., 2008) (Experimental Procedures). We selected promoters

that show clear regulatory conflicts in either the TMP-SPR or

the TET-SPR drug combination (Figures 5C and 5D), but also

a few promoters that show no clear conflicts or unusual behav-

iors (Figure 6 and Table S1). We then grew these strains in 2D

concentration gradients of either TMP-SPR or TET-SPR (Fig-

ure 3A), imaged cells at a fixed time point, and quantified
single-cell GFP fluorescence using automated image analysis

(Figure 7A and Experimental Procedures). For each promoter,

we sampled at least eight different drug conditions that reflect

different drug ratios at fixed growth inhibition.

We found unimodal distributions of expression levels in all

conditions. This observation indicates that bimodal stochastic

responses to drug combinations (Figure 1C) are rare, even

when the drugs elicit conflicting responses. Hence, our analysis

of population level measurements (Figures 2–6) does not suffer

from this potential complication. Importantly, for promoters

that show a prioritized response to the TMP-SPR combination,

we found that expression level cell-to-cell variability, measured

by the variation coefficient, often has a clear peak in the drug
Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc. 421
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combination (Figure 7B). This peak is located near the point

where a sharp transition in gene expression level occurs (Fig-

ure 7B). Near such a sharp transition, small fluctuations in the

detection of the drugs by bacteria (‘‘input noise’’ [Tkacik et al.,

2008]) may be amplified to yield large fluctuations in gene

expression level (‘‘output noise’’). This role of input noise offers

a plausible explanation for the observed increase in cell-to-cell

gene expression variability at the boundary between the two

sharply separated response domains in the 2D drug space.

Consistent with this view, cell-to-cell variability did not exhibit

peaks for any promoter showing a conflict in the TET-SPR

combination, where conflicts do not lead to sharp transitions

between the different expression level states but are smoothly

averaged (Figure 7C). These observations provide further

support for our conclusion that gene regulatory conflicts lead

to two sharply separated response domains in the TMP-SPR

drug combination while they are smoothly averaged in the

TET-SPR combination.

DISCUSSION

We found that regulatory conflicts in which a gene is upregulated

in response to drug A and downregulated in response to drug B

(Figure 1) play a key role in the bacterial gene regulation

response to combinations of antibiotics. Such conflicts occur

for many genes, in particular when the two drugs have different

modes of action (Figure 2). Using PCA, we found that over

70% of the gene regulation response to antibiotic combinations

can be explained simply as a response to the growth rate change

caused by the drugs (Figures 3 and 4). Importantly, the re-

mainder of the response is almost entirely captured by generic

ways of gene regulatory conflict resolution in a given drug com-

bination: (1) Cells can linearly superpose (‘‘average’’) the res-

ponses to the individual drugs, or (2) they can ‘‘prioritize’’ their

response to one of the drugs and essentially ignore the presence

of the other drug (Figure 5, cf. Figure 1). Which mode of conflict

resolution is used depends on the drug pair, but applies to virtu-

ally all genes that show conflicting regulation. Only a few genes

show responses to drug combinations that are not explained by

growth rate effects and conflict resolution alone (Figure 6).

Finally, for the prioritized response, we found that the cell-to-

cell variability in gene expression peaks when both drugs are

present, at the location in two-drug space where the cells switch

their response from one drug to the other (Figure 7). Together,

these results show that there are relatively simple, general rela-

tions between the transcriptional responses to drug combina-

tions and those to the individual drugs.

It is striking that just two PCs largely explain the bacterial

response to antibiotic combinations. While these PCs generally

have nontrivial shapes that depend on the drug pair, only two

numbers (scores) suffice to characterize the complete response

of a given promoter once the PCs are known (Figure 3C). The first

score, s1x , quantifies how strongly promoter X responds to

growth rate changes. The second score, s2x , measures the extent

to which the promoter shows the drug pair stereotypical conflict

resolution. The fact that these two numbers are enough to

capture the response of most promoters implies that the full

response matrix to the two-drug environment can be predicted
422 Molecular Cell 42, 413–425, May 20, 2011 ª2011 Elsevier Inc.
from a relatively small number of measurements: Once the first

two PCs for a given drug pair are identified (which can be done

by measuring the gene expression response to the full two-

drug environment for a relatively small number of genes), three

measurements (e.g., no drug, single dose of drug A, and single

dose of drug B) would suffice to determine the first two scores,

s1x and s2x , for that gene. From these scores, a prediction for

the expression levels across the entire two-drug space can be

readily calculated. Hence, our results provide a way to predict

the transcriptional response to a drug combination for most

genes from their response to the individual drugs.

A notable observation wemade is that the response of the vast

majority of genes is not biased toward either of the drugs (cf. Fig-

ure 1B): The transition between the two sharply separated

response domains of a prioritized response occurs almost

exactly at the point where growth inhibition by both drugs

(TMP and SPR) is equally strong (Figure 5E). Interestingly, these

two drugs have an antagonistic/buffering effect on growth

(Bollenbach et al., 2009; Chait et al., 2007), i.e., adding one

drug at low concentration when the other one is present at higher

concentration does not lead to a decrease in growth. These

observations are consistent with a simple scenario in which the

cells’ response is primarily determined by (1) the overall growth

inhibition (first PC) and (2) the drug that limits their growth

(second PC). If present, the third PC may describe promoters

that show specific responses to both drugs, including the drug

that does not limit growth. While this picture appears plausible,

more work will be needed to elucidate the mechanism that

underlies the observed strategies of conflict resolution. Specifi-

cally, one could measure the levels of factors that act upstream

of promoters (such as guanosine tetraphosphate, ppGpp) in

two-drug environments. In addition, one could study the effects

on conflict resolution of targeted genetic manipulations that

affect such global regulators (e.g., relAspoT deletions).

Moreover, it will be interesting to investigate the questions

addressed in this article for a large set of different drugs with

a range of different cellular targets (including DNA replication,

cell wall synthesis, and translation) (Walsh, 2003) and different

pairwise drug interactions (additive, synergistic, and antago-

nistic) (Bliss, 1939; Loewe, 1928, 1953; Yeh et al., 2006). Further-

more, it will be promising to extend our investigation to much

higher concentrations of both bacteriostatic and bactericidal

drugs. This approach would help to identify which types of

drug pairs lead to conflict resolution by averaging, which ones

lead to prioritization and if there are drug pairs that trigger yet

other behaviors. Such a comprehensive data set might allow

us to reveal a general relation between the drug interaction or

mechanism similarity and the cellular strategy for the resolution

of regulatory conflicts in the combination.

The approach presented here, in particular the PCA of gene

expression responses to drug combinations, is generally appli-

cable to other organisms, including yeast and human cancer

cell lines, different types of drugs, and to combinations of more

than two drugs. Extending our approach to yeast would be

relatively straightforward, since similar tools for fluorescence-

based transcriptional measurements (Huh et al., 2003) and drugs

with similar modes of action are available. In other model

systems, GFP-reporter libraries covering a considerable part of
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the genomemay have to be constructed first (Cohen et al., 2008).

Alternatively, other methods for genome-wide measurements of

mRNAor protein levels could be adapted to extend the approach

described here to other systems. Independently of method-

ology, it will be interesting to see to what extent the behaviors

identified in this study extend to other systems. It is quite

possible that eukaryotes, in which transcriptional regulation is

more complex than in prokaryotes, may resolve gene regulatory

conflicts in new, unexpected ways. The long-term prospect of

predicting the cellular response to a multidrug treatment from

the responses to the individual drugs may lay the foundation

for controlling cellular gene expression by targeted combina-

tions of drugs (Geva-Zatorsky et al., 2010). In particular, multi-

drug combinations may be designed in ways that exploit gene

regulatory conflicts to restore a healthy cell state in human

tissues, to circumvent cellular defense strategies, or to slow

down the evolution of drug resistance in chemotherapy.

EXPERIMENTAL PROCEDURES

Media, Strains, and Drugs

Experiments were conducted in M9 minimal medium with 0.4% glucose as

carbon source and 0.2% amicase. Drug solutions were made from powder

stocks, filter-sterilized, stored at �20�C in the dark, and added as indicated.

All strains used were derived from E. coli K-12 strain MG1655. Promoter-

GFP constructs for cspA, rmf, rpmE, dps, glyA, slp, recA, rrsA, wrbA, and

ileX (Zaslaver et al., 2006) were integrated into the attTn7 locus of strain

MG1655 as described (McKenzie and Craig, 2006). We used primers

GGGGACCACTTTGTACAAGAAAGCTGGGTCCGATTCTGATAACAAACTAG

CAACACC and GGTGAAGACGAAAGGGCCTCGTAGAGCCTGCTTTTTTGTA

CAAACTTGTCCCC for PCR and BP Clonase (Invitrogen) to move promoter-

GFP constructs into the delivery plasmid pGRG37. This plasmid was slightly

modified such that the cloning reactions could be performed with BP Clonase

and attB-flanked PCR products. Wild-type MG1655 were transformed with

this plasmid. Integrations at the attTn7 site were verified by colony PCR using

primers GATGACGGTTTGTCACATGGA and CCCCTATAGTGAGTCGTATTA

CATGG. Curing of the delivery plasmid in final strains was verified by testing

for ampicillin sensitivity.

Growth Rate and Gene Expression Assay

Overnight cultures were diluted�200-fold and grown on an automated robotic

system (Caliper) at 30�Cwith rapid shaking in 96-well microtiter plates (Costar)

containing 200 ml mediumper well. Absorbance at 600 nm (A600, proportional to

optical density OD600 via OD600 = 3.1 A600) and GFP fluorescence were re-

corded by a plate reader (Victor III, Perkin-Elmer) at intervals of 35–55 min for

24 hr and then background subtracted. Growth rates were calculated using

Matlab (The MathWorks) by linear regression of log(OD600) (Matlab function

‘‘regress’’) duringexponential growth (0.02<A600<0.3). Themeasurementerror

was evaluated as the 95% confidence interval of the linear regression and was

typically well below 10%. The growth rate at each drug concentration was ob-

tained as the median growth rate over the whole set of GFP reporter strains

measured in identical drug conditions. MIC was defined as the lowest concen-

tration at which background-subtracted A600 did not exceed 0.02 after 24 hr.

GFP background of GFP reporter strains was subtracted as previously

described (Zaslaver et al., 2006). We defined the expression level as the

mean GFP/A600 in the interval 0.04 < A600 < 0.3 (Figure 2A). Only promoters

with a clearly detectable GFP signal were used for analysis, reducing the total

number to 93 promoters (Figures 2C and 2D). Expression level changes (g)

relative to the drug-free control were normalized to the median expression

level change (g) of all promoters in the same drug environment. Changes in

the median expression level of all promoters reflect nonspecific effects such

as pH changes or changes of the reporter plasmid copy number. We previ-

ously verified that the effect of plasmid copy number on the measured expres-

sion level is independent of the GFP promoter (Bollenbach et al., 2009). Error
bars in Figures 2, 5, S3, and S4 were calculated from day-to-day variability of

replicate measurements as previously described (Bollenbach et al., 2009). The

white regions in the top right of panels that show promoter expression in 2D

drug environments (Figures 4, 5, 6, S1, S2, S3, and S5) reflect no data due

to low growth rates or drug concentrations not sampled.

2D drug concentration matrices were set up on 96-well plates (see black

dots in Figure 4A for concentrations used). Expression levels along growth

rate isoboles were calculated by linear interpolation using Matlab functions

‘‘griddata’’ (for the TET-SPR data set) and ‘‘interp2’’ (for the TMP-SPR data

set). The ‘‘effective drug fraction’’ (Figures 4C, 5, 7B, and 7C) is defined as

ISPR=ðITMP + ISPRÞ, where ID is the relative growth inhibition at the same concen-

tration of drug D alone: ID = 1� g with the normalized growth rate g.

Linear fits shown in Figures 5B, 5D, 7C, and S3B were performed by fitting

the function fðxÞ=mx +b to the data withm and b as fit parameters using Mat-

lab function ‘‘fit.’’ Sigmoidal fits were performed by fitting the function

gðxÞ=h tanhððx � x0Þ=wÞ+ r to the data, using x0, w, h, and r as fit parameters

in Matlab function ‘‘fit.’’ Here, x0 is the position of the transition (Figure 5E,

inset),w is a measure for the width of this transition, hmeasures the magnitude

of gene regulatory conflict, and r reflects the expression level change due to

growth rate.

Only promoters with R2 > 0.8 were used in the analysis of sigmoidal fits (Fig-

ure 5E). Lower values of R2 typically occurred for promoters with no regulatory

conflict, such that a sigmoidal fit to a constant expression level along the

growth rate isobole did not yield meaningful results for the fit parameters x0
and w.

Single-Cell Fluorescence Microscopy Assay

Cultures of chromosomally integrated promoter-GFP reporter strains were

grown to A600 �0.14, mounted on agar pads, and imaged (GFP fluorescence

and phase contrast). For each reporter strain, the exposure time was adjusted

to ensure that the highest signal was well below detector saturation. Several

hundred cells of each reporter strain were imaged in 8–11 different drug condi-

tions, and background fluorescence was subtracted. Images were segmented

automatically using custom Matlab code (Figure 7A) and manually verified.

GFP fluorescence per cell (Figure 7) was defined as the maximum GFP inten-

sity detected in the area of each cell (using the mean or median GFP intensity

yielded similar results).

Principal Component Analysis

PCA was performed on the expression level matrices Ex, treating the expres-

sion levels at all positions in the 2D drug concentration space as variables and

the corresponding expression levels of the different promoters at these posi-

tions as observations (Figure 3C). PCA was performed independently on the

TMP-SPR and TET-SPR data sets using Matlab function ‘‘princomp.’’ Only

promoters with a clearly detectable GFP signal were used for PCA (Table

S1). Only drug concentrations at which data was available for all promoters

were used in PCA (at high concentrations of both drugs, some reporter strains

did not reach sufficiently high OD values).
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