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An Equivalence Principle for the
Incorporation of Favorable Mutations
in Asexual Populations
Matthew Hegreness,1,2* Noam Shoresh,1* Daniel Hartl,2 Roy Kishony1,3†

Rapid evolution of asexual populations, such as that of cancer cells or of microorganisms
developing drug resistance, can include the simultaneous spread of distinct beneficial mutations.
We demonstrate that evolution in such cases is driven by the fitness effects and appearance times
of only a small minority of favorable mutations. The complexity of the mutation-selection process is
thereby greatly reduced, and much of the evolutionary dynamics can be encapsulated in two
parameters—an effective selection coefficient and effective rate of beneficial mutations. We
confirm this theoretical finding and estimate the effective parameters for evolving populations of
fluorescently labeled Escherichia coli. The effective parameters constitute a simple description and
provide a natural standard for comparing adaptation between species and across environments.

S
pontaneous beneficial mutations are the

fuel for adaptation, the source of evolu-

tionary novelty, and one of the least

understood aspects of biology. Although adapta-

tion is everywhere—cancer invading tissues,

bacteria escaping drugs, viruses switching from

livestock to humans—beneficial mutations are

notoriously difficult to study (1, 2). Theoretical

and experimental advances have been made in

recent years by focusing on the distribution of

fitness effects of spontaneous beneficial mutations

(3–8). Mapping the options for improvement

available to single organisms, however, is insuf-

ficient for understanding the adaptive course of an

entire population, especially in asexual popula-

tions of microorganisms or cancer cells where

multiple mutations often spread simultaneously

(9–16). Here, we use modeling and experimen-

tal results to show that the seeming additional

complication of having multiple lineages

competing within a population leads in fact to

a drastic simplification: Regardless of the

distribution of mutational effects available to

individuals, a population_s adaptive dynamics

can be approximated by an equivalent model in

which all favorable mutations confer the same

fitness advantage, which we call the effective

selection coefficient. We provide experimental

estimates of the effective selection coefficient

and the corresponding effective rate of benefi-

cial mutations for laboratory populations of

Escherichia coli, and we demonstrate the

predictive power of these effective parameters.

First, we use numerical simulations to demon-

strate the simplification that emerges in a popula-

tion large enough and a mutation rate high enough

that clonal interference (17–19)—competition

among lineages carrying favorable mutations—is

common. In an evolving population, most

beneficial mutations are rapidly lost to random

genetic drift (20, 21). Of the remaining mutant

lineages, some increase in frequency slightly,

only to decline as more fit lineages appear and

expand in the population (10, 16, 17, 22). The

evolutionary path taken by the population as a

whole is determined by successful mutations that

escape stochastic loss and whose frequencies rise

above some minimal level. Using a population

genetics model that includes mutation, selection,

drift, as well as clonal interference (23), we

explore the distribution of these successful

mutations for several underlying distributions of

beneficial mutations (Fig. 1), including an expo-

nential distribution as suggested by Gillespie_s
(8) and Orr_s (3) use of extreme value theory.

The salient feature of Fig. 1 is that very dissim-

ilar underlying distributions—exponential, uni-

form, lognormal, even an arbitrary distribution—

all yield a similar distribution of successful

mutations (24). Moreover, the distribution of

successful mutations has a simple form, peaked

around a single value. This fitness value is

typical of those mutations whose effects are not

so small that they are lost through competition

with more fit lineages, but are also not so large

that they are impossibly rare. The unimodal

shape motivates the hypothesis that an equivalent

model that allows mutations with only a single

selective value might approximate the behavior

of the entire distribution of beneficial mutations.

We investigate whether the adaptive dynam-

ics observed in evolving E. coli populations can

be reproduced by an equivalentmodel with only a

single value, a Dirac delta function of mutational

effects. We rely on a classic strategy for

characterizing beneficial mutations in coevolving

subpopulations that differ initially only by

selectively neutral marker. The spread of muta-

tions is monitored through changes in the marker

ratio (22, 25–29). Our experimental technique

uses constitutively expressed variants of GFP

(green fluorescent protein)—YFP (yellow fluo-

rescent protein) and CFP (cyan fluorescent

protein)—as neutral markers. All experimental

populations start with equal numbers of YFP

and CFP E. coli cells (N
Y
and N

C
) and evolve

for 300 generations through serial transfers

while adapting to glucose minimal medium.

The expected behavior of the marker-ratio

trajectories depends upon the rate at which

beneficial mutations appear in a population. When

beneficial mutations are rare, mutant lineages arise

and fix one at a time (8, 17). The spread of each

individual mutant lineage shows as a line of
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Fig. 1. Successful muta-
tions cluster around a sin-
gle value, irrespective of
the shape of the under-
lying mutational distribu-
tion. Probability density of
four underlying distribu-
tions: (A) exponential; (B)
uniform; (C) lognormal;
(D) arbitrary. (Insets) The
corresponding distributions
of successful mutations, defined here as those whose lineages constitute at least 10% of the population at any
time before the ancestral genotype diminishes to less than 1%. All simulations were done with beneficial
mutation rate of mb 0 10j5 and population size Ne 0 2 � 106 and were replicated 1000 times (23).
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constant nonzero slope when the logarithm of the

marker ratio is plotted against time (Fig. 2A),

where the slope is equal to the selection co-

efficient of the expanding lineage (27). When

the mutation rate in asexual populations is high,

however, beneficial mutations arise in both sub-

populations and compete (Fig. 2B).

Results of the adaptation experiments are

shown in Fig. 3A. As expected, the curves of

the logarithm of the ratio of N
Y

to N
C

are

initially flat, reflecting the equal initial fitness of

the ancestral YFP and CFP cells. Beneficial

mutations cause the marker ratio to deviate from

its starting value after È100 generations. The

plateaus and reversals of the slopes that often

appear after these initial deviations reveal the

simultaneous spread of multiple beneficial muta-

tions (additional evidence for the presence of

clonal interference is shown in figs. S3 and S4).

Concentrating on the initial phase of the experi-

ment, we extract the time, t, when significant

deviation from a flat line first occurs, and the slope,

a, of that deviation (Fig. 3C). We extract these

for all 72 marker-ratio trajectories, obtaining

empirical samples of a and t (Fig. 3, D and E).

Results from the evolving E. coli popula-

tions are compared to simulations results

produced with a theoretical model. The model

tracks two coevolving subpopulations (Bcyan[
and Byellow[) and accounts for the fluctuating

population size due to serial dilution, selec-

tion, and random drift (23). An input to the

model is a distribution from which the selection

coefficients of beneficial mutations are drawn.

To test whether mutations of a single effect

can generate variable adaptive dynamics compat-

ible with the empirical data, we use a Dirac delta

function as the equivalent underlying distribution

of beneficial mutations.We also explore two other

one-parameter distribution families—uniform and

exponential (to facilitate comparison, distributions

with more than one parameter, including the log-

normal distribution fromFig. 1, are excluded from

this analysis, though the conclusions that follow

apply to these as well). Given a mutational distri-

bution, the model has only two free parameters:

the beneficial mutation rate and the mean of

the distribution. For each distribution, for each

point in parameter space, many realizations of the

model are simulated (see example in Fig. 3B),

generating theoretical predictions in the form of

numerical samples of a and t. These numerical

samples, produced with the model, are then com-

pared to the corresponding empirical ones from

the E. coli experiments (using a Kolmogorov-

Smirnov test). The filled areas in Fig. 4 indicate

the region of agreement between the model and

the empirical data for each of the underlying

distributions of beneficial mutations.

The agreement with the Dirac delta function

demonstrates that beneficial mutations of a single

magnitude can indeed give rise to the rich

adaptive behavior observed in the experiment.

In particular, the differences in the timings of the

mutations are a sufficient source for the variabil-

Fig. 2. The evolutionary
spread of beneficial muta-
tions. (A) A mutation (dark
yellow) that occurs in a
YFP-labeled cell takes over
a mixed population of YFP
and CFP cells. (B) The
observed NY /NC ratio in
the population from (A);
the mutant’s selection co-
efficient, sY, can be obtained
from the slope at late
times. (C) A beneficial mu-
tation in YFP competing
with a beneficial mutation
in CFP that occurs later but
has a stronger selective
advantage, sC. (D) NY /NC
in the population from (C); the slope dlog2(NY/NC)/dt at late times is equal to sY j sC.

Fig. 3. Empirical and
numerical marker-ratio
data and trajectory pa-
rameterization. (A) Ra-
tio of YFP to CFP cells
of E. coli monitored for
300 generations (for
clarity, 36 of 72 pop-
ulations are shown and
the rest are presented
in fig. S2). The plateaus
and reversals (see ex-
amples in bold) reveal
the simultaneous spread
of distinct beneficial
mutations. The asym-
metry in the vertical
axis reflects the asym-
metry in the dynamic range due to the fluorescence properties of YFP and CFP. (B) Ratios based on
simulations using the Dirac delta function with a beneficial mutation rate me 0 10j6.7 and a selection
coefficient se 0 0.054 (values obtained from region of agreement in Fig. 4). (C) a and t are defined by
the function shown. The data, the best fit curve, and the corresponding values for a and t are shown
from one experimental population. (D and E) Histograms of estimated values of a and t for each of the
72 experimental populations (for the correlation between a and t see fig. S5).
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Fig. 4. Estimation of the
effective parameters and
demonstration that their
predictive power is ro-
bust to the underlying
distribution. Filled regions
represent agreement (at
95% confidence level)
between empirical data
and model simulations,
based on comparison of
marker-ratio trajectories;
shown in red is the re-
gion of agreement for
the Dirac delta function,
which provides an esti-
mate of the effective pa-
rameters; also shown are
the regions of agreement for exponential (green) and uniform (blue) underlying distributions.
Crosshatched areas are the regions where calculations of bfmaxÀ and bssucÀ from the exponential and
uniform distributions agree with predictions of these quantities derived from the effective parameters.
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ity in the marker-ratio data. The effective

parameters of the bacterial populations are

estimated from the delta function_s region of

agreement: the effective selection coefficient

s
e
0 0.054 T 0.003 and the effective rate m

e
0

10j6.7 T 0.2 mutations per genome per generation.

The consistency of more than one underlying

distribution with the data reinforces the point

illustrated in Fig. 1: Adaptive dynamics are

largely determined by a few broad properties of

the distribution, encapsulated by the effective

parameters, and not by its exact shape. The

regions of agreement, obtained by comparing

marker-ratio trajectories, are thus interpreted as

reducing to the same effective parameters.

The equivalent model (defined by the ef-

fective parameters) predicts other measures of

adaptation not trivially related to the marker-

ratio data. Using simulations, we examine two

quantities: bf
max

À, the degree of polymorphism,

as measured by the average (over repeated

simulations) of the frequency of the most com-

mon beneficial mutation when the ancestral

strain goes extinct (reduces to 1% of the popu-

lation); and bs
suc
À, the mean effect of successful

mutations, that is, the average fitness of all

mutant lineages that ever reach more than 10%

frequency by this time. Predictions of these

quantities based on the effective parameters are

obtained through model simulations with the

Dirac delta function. Regions where calcula-

tions of bf
max

À and bs
suc
À from the exponential

and uniform distributions agree with these

predictions are shown as the crosshatched areas

in Fig. 4. The striking overlap of the new re-

gions with the regions estimated from the

marker-ratio data highlights the diversity of

features captured by the effective parameters.

Comparing the Dirac delta function with a

more complicated underlying distribution, we

see that if the distributions agree in their pre-

dictions for one aspect of adaptation (marker-

ratio trajectories), they will also agree in other

aspects (bf
max

À and bs
suc
À). In accordance with

the idea of an equivalent model, these results

suggest that the predictive potential of the ef-

fective parameters is independent of the actual

underlying mutational distribution.

When multiple beneficial mutations spread

simultaneously in asexual populations, adaptive

dynamics can be reasonably described by an

equivalent model in which all favorable mutations

confer the same selection advantage. The scope of

this simple approximation, namely, the breadth of

observables it captures and the limits at which it

breaks down, is the subject of future research. Like

a local adaptive landscape, the effective selection

coefficient and the effective rate of beneficial mu-

tations characterize the dynamics of a population at

a specific point in its evolution. An entire adaptive

trajectory might be represented by tracking

changes in the effective parameters. Compared to

high-dimensional fitness landscapes, effective

parameters constitute a major simplification and

can serve as mileposts along the adaptive walk.
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Parietal-Eye Phototransduction
Components and Their Potential
Evolutionary Implications
Chih-Ying Su,1*† Dong-Gen Luo,1 Akihisa Terakita,2 Yoshinori Shichida,2 Hsi-Wen Liao,1

Manija A. Kazmi,3 Thomas P. Sakmar,3 King-Wai Yau1*

The parietal-eye photoreceptor is unique because it has two antagonistic light signaling pathways
in the same cell—a hyperpolarizing pathway maximally sensitive to blue light and a depolarizing
pathway maximally sensitive to green light. Here, we report the molecular components of these two
pathways. We found two opsins in the same cell: the blue-sensitive pinopsin and a previously
unidentified green-sensitive opsin, which we name parietopsin. Signaling components included
gustducin-a and Gao, but not rod or cone transducin-a. Single-cell recordings demonstrated that
Go mediates the depolarizing response. Gustducin-a resembles transducin-a functionally and likely
mediates the hyperpolarizing response. The parietopsin-Go signaling pair provides clues about how
rod and cone phototransduction might have evolved.

L
izards and some other lower vertebrates

have a third eye (parietal eye) (1) in ad-

dition to the two lateral eyes. This eye

may mediate the global detection of dawn and

dusk (1, 2) instead of conventional image-

forming vision. The parietal-eye photorecep-

tors resemble rods and cones in morphology,

but they show chromatic antagonism (a unique

feature among all known photoreceptors) con-

sisting of a hyperpolarizing light response

most sensitive to blue light and a depolarizing

light response most sensitive to green light (2).

The hyperpolarizing response is produced, as

in rods and cones, by the activation of a gua-

nosine 3¶,5¶–cyclic monophosphate (cGMP)–

phosphodiesterase that lowers the cGMP con-

centration and closes cyclic nucleotide-gated
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