
Structure and Evolution of Streptomyces Interaction
Networks in Soil and In Silico
Kalin Vetsigian, Rishi Jajoo, Roy Kishony*

Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is
not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are
known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks
has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces
strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony
development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich
set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The
probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random:
the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity—if strain A
inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived
from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve
rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary
model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead
to the observed statistical properties of the network. In the model, communities are evolutionarily unstable—they are
constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical
observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically
dynamic eco-evolutionary phenomenon.
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Introduction

Sampling DNA from diverse ecosystems has revealed a

breathtaking diversity of microbial life [1,2], especially in soil

[3–5]. But we have barely begun to explore, both experimentally

and theoretically, how these complex communities coexist and

function. We know that microbes can interact via secretion of a

wide array of small molecules, most notably antibiotic compounds.

But how prevalent, diverse, and specific are such interactions?

How is the incredible diversity of microbes and their natural

products maintained and promoted by complex and spatially

structured networks of interactions?

To tackle these questions, we isolated bacterial strains from

individual grains of soil and systematically measured all pair-wise

interactions among them. We measured compound-mediated

interactions, where a ‘‘sender’’ strain affects a ‘‘receiver’’ strain by

secreting metabolites, antibiotics, or other compounds

(Figure 1AB). We focused on bacteria from the genus Streptomyces,

which are the most prolific producers of small molecules, are

abundant in soil [6], and exhibit diverse production and resistance

capabilities [6–8] that are modular and prone to Horizontal Gene

Transfer (HGT) [9]. Sixty-four Streptomyces from four individual

grains of soil were isolated (Figure 1C), phenotyped for all possible

pair-wise interactions, and genotyped for 16S rRNA. We explored

the statistical properties of the resulting network and juxtaposed

them with those emerging from a simple ecological model of

bacteria evolving production of and resistance to antibiotics

[10,11].

We developed a high-throughput platform for measuring

directional pairwise interactions by observing how the products

of one bacterial strain affect the colony growth of another. A fine-

pored filter is placed on a nutrient agar surface, a lawn of the

sender strain is grown on top, and the filter is removed—leaving

behind sterile agar that has been altered or conditioned by the sender

strain. The conditioned agar is then resupplied with concentrated

liquid nutrients to compensate for the nutrients consumed by the

donor. A receiver strain is point-inoculated onto the sterile

conditioned agar and time-lapse movie of the growing colony is

taken. A high-throughput implementation of this assay allowed us

to acquire 11,500 movies along 15 d at 4 h time resolution,

covering all pairwise interactions within our collection of 64 strains

in duplicate (Figure 1D, Materials and Methods). By comparing

colony growth of the receiver strains on conditioned and non-

conditioned agar, we identify interactions between strains. We

quantified the first time point in which each colony becomes

visible on the images (appearance time) to identify growth
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inhibitory and growth promotion interactions. In addition, we

visually scored instances of inhibition of aerial mycelium formation

(and subsequent sporulation).

Results

The Interaction Network Is Balanced, Diverse, and
Sender-Determined

We found a rich and complex interaction matrix among our

collection of strains with multiple cases of growth inhibition,

growth enhancement, and inhibition of aerial mycelium

(Figure 2A; and see also all the 11,500 time lapse movies

underlying this matrix in Figure S8). This matrix showed two

immediately apparent special properties: it is ‘‘balanced’’ and it is

‘‘sender determined,’’ as we now explain.

The first noteworthy property of the matrix is that the frequency

of interactions (a.k.a. connectance) is balanced: the probability that

two random isolates interact is neither close to zero nor close to

one. While there are many strong interactions, the matrix is far

from the limit in which interactions are non-specific because

everyone interacts with everyone else: of the 64 isolates, there are

at least 42 different interaction profiles. We found 45% of growth

or aerial mycelium inhibitory interactions (25% complete

inhibitions of growth) and 19% growth promotion (see Materials

and Methods for additional details). The frequency of inhibitory

interactions is significantly higher (and more balanced) than

previous estimates based on zones of inhibition [12]. The balanced

frequency of interactions makes this network more highly

connected than most known ecological networks (only for a few

food webs the density approaches 30%) [13–16].

The second striking property of the measured matrix is that it

is very different along the sender and receiver axes, with

characteristic stripes of inhibition and non-inhibition running

along the receiver (vertical) axis. This asymmetry is surprising

because the existence of an inhibitory interaction is, in general,

influenced by both the sender, which needs to produce a toxic

compound, and the receiver, which needs to be sensitive to the

compound produced. In the extremes, a matrix that is

determined purely by the properties of the sender would exhibit

perfect stripes in the vertical direction, while a receiver-

determined matrix would exhibit stripes along the horizontal

(sender) axis. Thus, the network we observed is more sender-

determined. This sender-receiver asymmetry can be quantified by

comparing the distribution of the fraction of isolates that each

isolate inhibits (sender degree) with the distribution for the fraction

of isolates that inhibit each isolate (receiver degree) (see Figure 2B).

The sender degree is broad and peaks near its extreme values,

while the receiver degree is narrower and unimodal. The

difference of the variances of the receiver and sender distributions

is a measure of the sender-receiver asymmetry (Q = 20.37; Figure 2C).

The negative value of this quantity means that information

gathered about a sender from a few interactions let us predict far

better the rest of its interactions than the corresponding

information about a receiver. The sender-receiver asymmetry is

pronounced but not extreme, indicating the importance of

resistance to antibiotics that strains do not themselves produce.

The bimodality of the sender degree distribution makes this

network very different from networks with nodes randomly

connected with a fixed probability (Erdös–Renyi random graphs),

scale-free (social) networks [13], and food webs with exponential-

tailed distributions [17].

It is unclear how coexistence between strains that inhibit almost

everyone and strains that inhibit almost no one is maintained. One

possibility is the presence of an ecological tradeoff between ability

to inhibit and ability to resist, which would imply a positive

correlation between the sender and receiver degrees. But no such

correlation exists; on the contrary, isolates that inhibit most are

also among the most resistant (Figure S1A, p,1024). There is also

no correlation between growth rate on non-conditioned media and

the sender or receiver degree (Figure S1B).

We decided to look for hints about the maintenance of a diverse

sender-determined network in the network evolution. We

sequenced the 16S rRNA of all isolates and found that closely

related isolates are less likely to inhibit each other (Figure 3B), but

there is a poor overall correlation between phenotypic and

phylogenetic distances (Figure 3A,C). Even isolates with identical

16S rRNA sequences can have very different interaction profiles.

This lack of strong correlation between phylogeny and inhibition

profiles is consistent with previous work [18]. To further exploit

this phylogenetic signal, we compared the phenotypic divergence

of sender and receiver profiles for isolates with the same 16S, and

contrasted it with the null expectation of isolates with different 16S

(Figure 3D). Interestingly, the sender profiles diverge dispropor-

tionately more than the receiver profiles for closely related strains

even after controlling for the overall sender-dominated nature of

the matrix (P = 2?1024). So it seems that the Streptomyces

community is in a state in which frequent evolutionary changes

in production (mediated for example by transfer of plasmids

carrying antibiotic production genes) cause dramatic changes to

ecological interactions. The coupling between ecology and

evolution is therefore important for understanding the network

properties.

Model
Is the balanced frequency of interactions and sender-determined

nature accidental or a natural outcome of the ecological and

evolutionary dynamics of interacting Streptomyces communities?

Author Summary

Soil harbors a diverse spectrum of bacteria that secrete
small molecules such as antibiotics. Streptomyces bacteria,
considered the most prolific producers, have been mined
for decades for novel products with therapeutic applica-
tions, yet little is known about the properties of the
interaction networks these compounds mediate. These
networks can hold clues about how the diversity of small
molecules and of Streptomyces strains with different
production and resistance capabilities is maintained and
promoted. To explore the network properties, we devel-
oped a high-throughput platform for measuring pairwise
phenotypic interactions mediated by secreted metabolites,
and used it to measure the interaction network among 64
random Streptomyces isolates from several grains of soil.
We found many strong but specific interactions that are on
average determined more by metabolite production than
by metabolite sensitivity. We found reciprocity between
strains, whereby if one strain inhibits or promotes the
growth of a second strain, it’s likely that the second strain
affects the first strain in a similar manner. These
interactions are not correlated with phylogeny, as very
closely related strains exhibit different interaction patterns.
We could explain these findings with a mathematical
model requiring interplay between ecological dynamics
and evolution of antibiotic production and resistance,
suggesting that the bacterial and small molecule diversity
of these communities is maintained by constant evolu-
tionary turnover of interaction phenotypes.

Streptomyces Interaction Networks
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Can we account for the large changes in interaction patterns over

short evolutionary distances?

We consider a simple in silico model of communities of strains

producing and resisting a set of antibiotics. A strain inhibits

another if it produces at least one antibiotic to which the other is

sensitive. Communities of strains with randomly assigned produc-

tion of and resistance to antibiotics exhibit a diverse set of

qualitatively different interaction matrices, depending on the

frequency of production and resistance (Figure 4A). With many

antibiotics, matrices similar to the observed—balanced frequency

of interactions and moderately sender-determined—occupy a

small region of the parameter space, and require low frequency of

production and high frequency of resistance. This raises the

question of whether introducing evolution into the model can

inherently direct it into the regime of balanced and sender-

determined interactions.

Figure 1. Platform for high-throughput measurement of pairwise interactions. (A) A directional pairwise interaction measures how the
products of a sender strain affect the morphological colony development of a receiver. (B) A fine-pored filter is placed on an agar surface, a lawn of
the sender is grown on top, and the filter is removed, leaving behind sterile agar that has been altered (conditioned) by the sender strain. The
conditioned agar is then resupplied with concentrated liquid nutrients to compensate for the nutrients consumed by the donor. A receiver strain is
pinned (point-inoculated) onto agar and imaged frequently, which allows us to see the developmental phenotype of the receiver. (C) Grains were
sampled with a needle tip from soil cores, and Streptomyces strains isolated. (D) By comparing colony growth of the receiver strain on conditioned
and non-conditioned agar, we can identify interactions between strains. Shown is the colony development of a receiver in two replicas on non-
conditioned and three conditioned media (on a subset of time points). The colony appearance time is marked by orange arrow. We observed partial
or complete inhibitions of growth, faster colony appearance, inhibition of aerial mycelium formation, as well as (not shown) changes in colony
morphology and sporulation enhancements. We have developed a high-throughput implementation of this technique using 96-well agar plates,
robotic inoculation of the sender, nutrient resupply and pinning, an array of 30 modified optical scanners, and automated data acquisition and image
analysis.
doi:10.1371/journal.pbio.1001184.g001

Streptomyces Interaction Networks
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Figure 2. Interactions are balanced and sender-determined. (A) Interaction matrix sorted by 16S relatedness. The sender isolate is on x-axis,
receiver isolate on the y-axis. The color of each entry is determined by the appearance time of a receiver colony on conditioned media relative to non-
conditioned media: later appearance (red), earlier appearance (blue), no effect (white), and missing data (gray). Color saturation increases with the
magnitude of the effect, with full saturation reached for 10 d delay (red) and 2 d speedup (blue). Red dots indicate inhibition of aerial mycelium
formation. Five isolates having sender or receiver information missing are not shown. (B) Sender and receiver degree distributions for inhibitory
interactions (appearance time and sporulaton inhibitions combined). The light-colored portion of the bars displays the contribution from ‘‘clonal’’
isolates (identical interactions and 16S). Here, negative interactions are defined as delays of more than 1 d in colony appearance time or as inhibitions
of aerial mycelium formation. (C) Shown is the position of the observed matrix (star) in the space formed by the fraction of interactions and the
sender-receiver asymmetry. The color expresses the sender-receiver asymmetry (from green for sender-determined to magenta for receiver-
determined) and the lightness expresses the fraction of inhibitory interactions (from white for no interactions to black for all strains interacting with
all others).
doi:10.1371/journal.pbio.1001184.g002

Streptomyces Interaction Networks
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We imposed simple non-spatial ecological dynamics that

implicitly incorporates the importance of spatial relations between

bacteria over short time scales (the antibiotics stay near their

producers). The fitness of each strain depends on the weighted sum

of its interactions with all other strains, incorporating the following

contributions: (i) a negative effect of being inhibited by others, (ii)

an advantage of inhibiting others, and (iii) a reduced ability to

inhibit if being inhibited (protection by inhibition). A cost for

production or resistance of any antibiotic is also added. The

resulting mathematical structure is that of a discrete time Lotka-

Volterra model with coefficients derived from the pairwise

interaction matrix (Figure 4B and Materials and Methods).

For simplicity, the model ignores that antibiotics might also

function as a ‘‘common good’’ reducing competition from non-

resistant Streptomyces and non-Streptomyces strains. In addition, it

ignores the possibility of resistant neighbors extending their

protection to non-resistant strains [19]. We also ignore positive

interactions and primary metabolism differences (utilization of

different resources and cross-feeding), which are potentially

important. Some of these effects can be incorporated by adding

terms with higher order interactions (for several model extensions,

see Materials and Methods and Figure S7).

To capture the long-term effects of the interplay between

ecology and evolution on the statistical properties of interactions,

we added mutations to the above model. Mutations allow

acquisition or loss of production and resistance to any of the

antibiotics. Turnover of production and resistance capabilities is

indeed expected to be important for Streptomyces, as evidenced by

the modular nature of antibiotic production and the vectors

through which it spreads.

The simulation starts from a single strain that is sensitive to all

antibiotics and follows the dynamics until a statistical steady state is

reached (Figure 4C). We systematically explored the behavior of

the model for a range of costs of production and resistance

(Figure 4D). The results show a maximum cost of production

above which no antibiotics are produced (Figure 4D, white area).

Strikingly, below this threshold we see balanced sender-deter-

mined matrices (Figure 4D, green shades), as long as the

production costs are higher than the resistance costs (above the

dashed blue line). There is an inherent feedback that keeps the

frequency of interactions from becoming too low or too high: an

increase of interaction frequency selects for an increase in

resistance levels, which then leads to a decrease of the interaction

frequency. This qualitative picture holds provided that the level of

protection by inhibition is below a certain threshold (Figures S2,

S3A). On the other hand, if inhibition is an effective defense, then

when resistance cost is high the system collapses into a state in

which most strains inhibit each other (Figures S2, S3A). While

different outcomes are possible in the model, we observe balanced

and sender-determined matrices over a large region of the

parameter space (Figure S3).

We also explored the relation between interaction and

phylogeny in the simulations. In agreement with our experimental

observation, in the balanced and sender-determined region, we

find that in the resulting interaction matrices (Figure S4A) strains

are more likely to interact when they are phylogenetically distant

(Figure S4B), and there is a weak overall correlation between

phylogenetic and phenotypic distance (Figure S4C).

Community diversity requires both ecology and evolution. The

functional diversity of the system increases sharply with both the

evolutionary rate and the population size, and turning off the

ecological interactions or reducing the mutation rate leads to a loss

of diversity (Figure 4E and Figure S5). The community steady state

is characterized by a continuous turnover of different interaction

phenotypes (Figure S4D), indicating its evolutionary instability.

Reciprocity
To investigate statistical properties beyond those captured by

the degree distributions, we followed an established procedure for

identifying interaction motifs—local patterns of interactions that

are more frequent than expected by chance [20]. We discovered

Figure 3. Sender profiles diverge faster than receiver profiles.
(A) Distance between a pair of sender/receiver profiles is defined as the
fraction of differing positions, and phylogenetic distance is proportional
to the number of base pair differences in 16S rRNA. (B) Closely related
isolates are less likely to inhibit each other. Plotted is the probability of
inhibition for all pairs of isolates closer than a given 16S rRNA distance.
(C) Number of 16S nucleotide differences (x-axis) versus number of
sender (green) and receiver (magenta) profile differences (y-axis) for all
isolate pairs. (D) The distance between sender profiles is plotted against
the distance between receiver profiles for pairs with identical 16S rRNA
(orange circles), and for pairs with identical randomized 16S (black
circles). The randomization was done by permuting the assignments of
the 16S sequences to isolates. There is an apparent tendency for sender
profiles to diverge disproportionately more than receiver profiles for
closely related strains. This is quantified in the inset, which displays the
mean ratio of distances between sender and receiver profiles for pairs
with identical 16S (orange arrow) and the corresponding distribution
obtained by randomly permuting the assignments of 16S sequences to
isolates (black histogram); p,1024.
doi:10.1371/journal.pbio.1001184.g003
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that the simulated interaction networks are strongly enriched for

mutual inhibition when compared with random networks with the

same sender and receiver degrees for each isolate (Figure 5A). This

is not surprising since mutual inhibition is an important

mechanism for ecological balance. We, therefore, looked for

reciprocity in the experimental data. In the experimental data,

unlike the model, there is an extra complexity due to positive

interactions (growth promotions are not included in the model).

With both positive and negative interactions there are six two-

isolate motifs (Figure 5B,C). We compared the six motif

frequencies with those for random matrices that have the same

sender and receiver degrees for each isolate, and which preserve

the corresponding degrees for the growth promotion interactions.

Since an obvious source of reciprocity structure is the presence of

Figure 4. Balanced and moderately sender-determined matrices emerge naturally from an evolutionary model of antibiotic
interactions. (A) Matrix statistics for in silico strains randomly assigned production, resistance, or sensitivity to 40 antibiotics. A point inside the
triangle specifies the probabilities of producing, being resistant to, or being sensitive to antibiotics. The triangle vertices correspond to the cases
where every community member is sensitive to, resistant to, or producer of all antibiotics. Probabilities are proportional to the distance from the
opposing edge, and sum to 1. The color represents the fraction of interactions and the sender-receiver asymmetry in the color scheme used in (2C).
(B) Schematic of the ecological dynamics. The fitness of a colony (e.g. number of spores it produces) is determined by the pairwise interactions with
its neighbors. In the ecological dynamics we average over all possible combinations of neighbors. (C) An evolutionary trajectory, after statistical
steady state has been reached, projected onto the plane of interaction density (y-axis) versus sender-receiver asymmetry (x-axis). The trajectory
fluctuates around a mean value (denoted by *). (D) This mean value is calculated on a grid of costs of production and resistance (blue dots; patch
color represents the mean interaction density and sender-receiver asymmetry, as defined in C). In a large area of parameter space, when production
cost is larger than resistant cost (above the blue dotted line), the interaction matrix is balanced and sender determined (green shades). Very low
resistant cost would lead to low density of interactions (not shown). (E) Functional diversity requires both ecological interactions and evolution.
Functional diversity is shown as a function of evolutionary rate for simulations with species interactions (black circles) and with effect of interactions
on the dynamics disabled (red dots). Two organisms are considered functionally distinct if they interact differently (as senders or receivers) with an
existing organism. Diversity is expressed as the exponential of the Shannon-Wiener Index, and the population evolutionary rate is mN (plotted for
fixed population size N = 106 and varied mutation rate m). The stars in (C), (D), and (E) correspond to the same simulation, the dynamical properties of
which are shown in Figure S4.
doi:10.1371/journal.pbio.1001184.g004
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identical isolates, we excluded strains with identical 16S and

interaction profiles from this analysis. As we observe in the model,

the analysis of the experimental data revealed statistically

significant enrichment for reciprocal interactions—there are more

mutual inhibitory interactions and mutual growth promotions

than expected and fewer asymmetric relationships (Figure 5B).

If reciprocity of interactions among pairs of strains is a property

of coexisting communities, we may expect that it will be more

enriched in strains coming from the same soil grain than for strains

isolated from different grains. We found that while the frequency

and strength of positive and negative interactions does not differ

within and between grains, interactions of pairs of strains within

grains do indeed tend to be more reciprocal than interaction of

strains from different grains (Figure 5C). This result is significant

only if we include the inhibitions of aerial mycelium. The motif

distributions are also sensitive to the choice of thresholds for

defining interactions. A threshold independent analysis of the

continuous data shows again enrichment for reciprocity (Figure

S6, p = 0.001). The apparent enrichment for reciprocity remains if

we control for a tendency to have isolates with more similar 16S

within a grain. A larger dataset will be required to distinguish

between different underlying causes for the patterns of interactions

within and between soil grains.

Discussion

We find that Streptomyces isolates from soil grains exhibit diverse

and rich interaction patterns. The interaction matrix they form

has a balanced frequency of interactions—the probability that two

random strains interact is neither close to zero nor to one. The

sender-degree distribution is broad and bimodal—isolates tend to

inhibit almost everyone or almost no one, which makes the

interactions statistically controlled more by the properties of the

sender than the receiver. This sender-receiver asymmetry, while

pronounced, is not extreme, indicating the importance of

resistance to compounds produced by others. These properties

make this network very different from other ecological networks,

which have monotonic degree distributions, and typically exhibit

much lower interaction frequency. Finally, the community is

enriched in reciprocal interactions—interaction pairs are enriched

in mutual inhibitory interactions and mutual growth promotions,

while it is rare to find cases in which one strain promotes a second,

Figure 5. Reciprocity is enriched for all isolates and within grains. (A) The frequency of mutual inhibitions within a simulated network (arrow)
is compared with that for random networks preserving the sender and receiver degrees of each node (histogram). (B) For the measured network of
interactions, we compare the frequency of the six possible pairwise motifs of positive and negative interactions with those for suitably randomized
networks. We constructed random networks with the same receiver and sender degrees for each isolate. We compared the motif frequency with that
for the distribution for randomized networks (Inset). Bars show the relative deviation of actual motif frequencies from the mean for randomized
networks, and stars indicate the significance. (C) Intra-grain motif frequencies reveal spatial structuring. We permuted the assignment of isolates into
grains, and calculated the motif frequencies only for pairs of isolates from a same grain. For both panels, positive interactions are defined as at least
12 h earlier colony appearance, and negative interactions are as in Figure 2B. In (A) and (B) we included only isolates with distinct sender or receiver
profiles.
doi:10.1371/journal.pbio.1001184.g005
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but this second strain inhibits the first. This reciprocity is further

enriched among strains derived from the same grain of soil, thus

revealing spatial structuring of interactions.

These properties of the interaction network have emerged

from a long evolutionary process, which we probed by

juxtaposing interactions and phylogeny. We found that the

interactions of an isolate can change dramatically even over

short evolutionary time (indicated by very close 16S sequences),

with evolution changing the production profiles more than the

resistance profiles. Incorporating such fast evolution in a

dynamic ecological model of antibiotic interactions, we find that

most of the observed properties of the network are reproduced

under a broad range of parameters. The community composi-

tions are not static—increase in production of an antibiotic

promotes resistance, which promotes sensitivity, and invites

production again. As the community undergoes cycles with

respect to different antibiotics, different combinations of

production and resistance become favorable, which makes it

evolutionary unstable. In our model both ecological interactions

and continuous turnover of interaction phenotypes are required

to maintain functional diversity.

Our work has several important limitations. Perhaps the main

one is that interactions are measured in the lab and actual

interactions in the soil may be more complex or different. We were

also limited to studying only the interactions among Streptomyces

strains; interactions between Streptomyces and other microbes could

be of major importance. Higher order interactions, such as

synergy or antagonism between natural products, or induction of

small molecule production by other small molecules, are not

captured by the pairwise measurements. Many of these shortcom-

ings are inherent to most current studies of microbial species

interactions. However, the systematic and high-throughput nature

of the current study allows us to ask questions at the statistical

level, and might therefore be less prone to some of these

difficulties. Furthermore, the high-throughput interaction platform

developed here and the simulations offer a natural foundation for

many subsequent studies of microbial communities, which will

address some of the above concerns, potentially yielding important

biological insights. For example, it is now possible to probe how

the statistical properties of networks, such as the relative

significance of positive and negative interactions, are affected by

media composition and the presence of other small molecules.

This enables investigations of the regulatory roles of and epistatic

effects between small molecules. It would also be interesting to see

whether the effects of a sender on a receiver will be modified if the

sender is co-incubated with the receiver. Finally, the interaction

platform can be used to follow the evolutionary and ecological

dynamics of synthetic laboratory communities of interacting

microbial strains.

The observed network properties do not seem to correspond to

an ecologically stable state maintained by antibiotic interactions

alone. Instead, the model and observations suggest that they are

supported by a constant evolutionary change. The distribution of

production and resistance in the community is poised so that

simple changes in production capabilities of a strain can alter its

interactions with many other strains potentially to a great

ecological advantage. This evolutionarily unstable ecological state

seems complemented by the modular nature of the secondary

metabolite gene clusters, which enable such changes and, thus,

lead to turnover of interaction phenotypes of different strains and

species. This continuous turnover might in turn be important for

the emergence and maintenance of the modularity and clustering

of small molecule production and resistance genes and their

recruitment to mobile genetic elements [21]. This reasoning

suggests a unified view of network structure, network evolution,

and modularity of secondary metabolism to be further explored.

Materials and Methods

Sampling Grains, Isolation, and Spore Stock Preparation
We sampled four soil grains of soil by touching the soil with a

dry needle tip, and lifting particles of less than 1 mg of wet weight.

Three of the grains were 1 cm away from each other in one soil

core, and the fourth grain was 10 cm away from a second soil

core. The depth was approximately 2 cm below the surface. The

sampling was performed in December from foliage-covered soil

away from visible roots. Each grain was dried for 2 d, then

suspended in dH2O, vortexed, sonicated, diluted, and plated on

Streptomyces Isolation Media [7]. Plates containing five colonies

or fewer were sampled in order to minimize potentially biasing

interactions between emerging colonies. Isolates that exhibited the

characteristic aerial mycelium pattern of Streptomyces were selected

at random after 2 wk, and their genus identity later verified by

sequencing. Five of the isolates were classified as genus Kitasatospora

within the family Streptomycetaceae by the Ribosome Database

Project [22]. Each isolate was restreaked once, then grown in TSB

for 3 d, and 300 ml/plate was spread on four petri dishes

containing Bennett’s agar [7]. Plates were incubated for 14 d at

28uC. Spore lawns were harvested in 12 ml of 0.01% Tween 80,

vortexed for 2 min, and filtered through 5 mm syringe filter to

separate the spores from mycelium. The filtrate was centrifuged at

1,000 g for 10 min, and the spore pellet was resuspended in 1.1 ml

of 20% glycerol, aliquoted, and frozen at 280uC. Each spore stock

that we used was thawed only once. During stock preparation,

tubes were kept on ice.

Soil Properties
Bulk soil was sent to the Soil and Plant Tissue Testing Lab at the

University of Massachusetts at Amherst. The soil pH is 5.5. The

texture is loam with 46.7% sand, 42.1% silt, and 11.2% clay.

Organic matter, 12.6%. NO3-N, 0 ppm. Mineral content: P,

7 ppm; K, 230 ppm; Ca, 1,511 ppm; Mg, 157 ppm. Micronutri-

ents: B, 0.3 ppm; Mn, 7.1 ppm; Zn, 9.3 ppm; Cu, 0.3 ppm; Fe,

32.4 ppm; S, 28.8 ppm. Cation Exch Cap, 21.7 Meq/100 g.

Interaction Media
Media for interactions: 15 g purified agar in 1 L d H2O, 2 g

potato starch, 0.8 g casein, 1 g KNO3, 0.4 g K2HPO4, 0.2 g

MgSO4, 30 mg CaCl2?2H2O, pH 7.2. All components were

autoclaved separately in concentrated form, and all agar plates

were made from the same autoclaved stocks. Resupply media was

186 concentrated interaction media with the exception of

KHPO4, which was 366 concentrated, pH 7.0.

Interaction Protocol
Black 96-well agar plates were robotically over-filled with agar,

and before solidification a glass plate was lowered to 1.5 mm

above the plate to flatten the agar meniscus. The glass plate was

slid sideways upon solidification of the agar. The resulting agar

columns were flat on top (to ensure good filter contact and high

image quality), protruded above the edge of the plate (to ensure

good contact with filter during conditioning), and well separated

from neighboring wells (to prevent cross-talk). Since high pipetting

accuracy was required, the aspirated amount was automatically

adjusted based on the instantaneous agar temperature (,50uC),

care was taken to dip the pipette tips to the same depth in the agar

reservoir, and room ventilation was turned off to prevent

asymmetric cooling of the agar in the tips. Rectangular filters—
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polycarbonate 0.03 mm pore size—were placed over the agar

plates. Each well was inoculated with 8 ml of spore stock. Due to

the hydrophobicity of the filters, droplets above neighboring wells

were well separated.

After 8 d of incubation, growth on each filter was imaged, and

the filter removed. Filter images were used to discard data from

defectively conditioned or contaminated wells. Plates were

resupplied with a 20 ml droplet of resupply media, and dried in

a fume hood for 90 min. Each plate was pinned from a source 96-

well plate containing 100 ml/well of spore stock (,107 spores/ml).

Source plates were kept between 4 and 8uC during pinning. Pins

were sterilized between plates to prevent contamination of the

source plate due to accidental contamination of the agar plates.

The time of pinning of each plate was recorded, and it was placed

upside down on a flatbed scanner so that the agar surface is 2 mm

away from the scanner glass surface. The focusing plane of the

scanners was correspondingly adjusted. To minimize agar drying,

plates were sealed to the scanners with packing tape. Colonies

were scanned approximately every 4 h. Temperature was

maintained at 28uC, but jumped temporarily by 1uC after each

scan. Plates were scanned for at least 15 d.

Image Analysis
The appearance time for each colony (the first time point at

which a colony becomes visible on the images) was manually

determined using custom interactive software. Colonies associated

with agar defects or contaminations were discarded. Aerial

mycelium is apparent on the images as a fuzzy texture on top of

the colonies (Figure 1D). Aerial mycelium inhibition was scored if

there was no or very little (in comparison to non-conditioned)

aerial mycelium coverage of the colony after 15 d.

Interaction Frequencies Details
Twenty-five percent of the interactions are complete inhibitions,

i.e. no visible growth of receiver colonies. One isolate inhibits itself.

An additional 10% of interactions are partial inhibitions with

colonies appearing at least 1 d later on conditioned media (for a

total of 35%). The fraction of inhibitory interactions is 45%, if

inhibitions of aerial mycelium formation are included.

16S rRNA Sequencing
Colonies were grown in TSB for 3 d, centrifuged at 1,000 g for

10 min, and resuspended in dH20 three times. Cells were then

resuspended in lyses buffed (PrepMan) and heated to 100uC for

10 min, centrifuged, and the supernatant was frozen at 220uC.

3 ml of this supernatant was added to 60 ml PCR mix containing

12 ml Qiagen Q-solution, 2.4 ml of 10 mM forward primer GAG

AGT TTG ATC CTG GCT CAG, and reverse primer CGG

CTA CCT TGT TAC GAC TTC. Samples were PCR amplified

(95uC for 3 min, 35 cycles of 95uC for 1 min, 55uC for 1 min,

72uC for 1:30 min, and final extension at 72 deg for 7 min), and

PCR products were sent for sequencing upon confirmation of

existence of a product of the expected size (,1.5 kb). Sequences

from the forward and reverse primers had a significant overlap.

Sequences are available through Genbank, accession numbers:

JN020489–JN020551. The grain and isolate number within a

grain is specified in the description for each sequence; e.g. G4_6 is

the sixth isolate from grain four.

Phenotypic Diversity of Isolates
We considered the profiles of two isolates distinct if they differed

by more than 2 d in appearance time (the first time point in which

a colony becomes visible on the images) for both replicates in at

least three sender or three receiver positions. According to this

measure, there are 42 distinct phenotypic profiles.

Interaction Density and Sender-Receiver Asymmetry
For a N6N binary interaction matrix Ai/j (one indicates an

interaction, and zero no interaction), the frequency of interactions

is F~
X

ijAi/j=N2, and the sender-receiver asymmetry is

defined as Q~ vari

X
j
Ai/j=N{varj

X
i
Ai/j=N

� � 1

F (1{F)
.

Matrices with negative Q are sender-determined, and with positive

Q are receiver-determined. We obtain negative Q independently of

how we threshold the inhibitory interactions and of whether or not

we include aerial mycelium inhibitions.

Calculating Phenotypic Distance Between a Pair of
Sender/Receiver Profiles

The fraction of differences between profiles was calculated (after

discarding defective and inconsistent replicas). The profiles were

taken from a binary interaction matrix in which inhibitions were

defined as delays in colony appearance time of more than 1 d.

Increasing the threshold to 3 d (i.e. strong inhibitions) did not

change the qualitative findings of Figure 3. However, inclusion of

aerial mycelium inhibitions renders the statistics of Figure 3D

insignificant.

Calculating Phylogenetic Distance
Sequences were aligned to a universal 16S rRNA template using

the Ribsomal Database Project website [22]. For each pair of

sequences, only positions for which both sequences have high-

quality values from the sequencing trace were considered; the rest

were treated as missing values. Phylogenetic distance was

computed as the fraction of differences (in high-quality positions).

Alignment gaps were counted as normal differences.

Network Motifs
For the measured network of positive and negative interactions

(without weights), we generated an ensemble of random networks

that have the same number of ingoing and outgoing arrows of

positive and negative interactions for each isolate. Networks were

randomized by taking random pairs of single arrows (between

different isolates) and swapping the isolates on which they end,

provided the two arrows created by the swap do not exist already

or correspond to missing or defective experimental values. (In this

way, the missing or defective values of the matrix were kept in

place.) Each cycle consisted of swapping one pair of positive and

one pair of negative arrows. This operation was performed

thousands of times before selecting each random ensemble

representative. For each random network the frequency of each

of the six pairwise motifs was calculated, without counting any of

the diagonal matrix elements. The motif significance (p value) was

calculated as the fraction of random networks that have more

extreme motif frequency than that for the observed network. The

protocol was analogous for the matrices resulting from the eco-

evolutionary model, which had only negative interactions and no

missing or defective values.

Eco-Evolutionary Model
Ecology: Each strain i is characterized by an array Zia, specifying

whether it is producer (P), resistant (R), or sensitive (S) to antibiotic

a. Let Airj be the binary matrix of inhibitory interactions. Strain j

inhibits strain i, i.e. Airj = 1 , if Zja = P and Zia = S for any a. Let ni

be the fractional abundances of different strains (summing to one).

The ‘‘fitness’’ of i is fi~f 0
i 1ze

X
j
Dfijnj

� �
, where Dfij~
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{Ai/jz(1{l)Aj/iz(l{g)Ai/jAj/i. At each time step N
individuals are drawn from different species with relative proba-

fobilities nifif g. l and g are (positive) ecological parameters

controlling the direct benefit of inhibiting neighbors and the

consequence of mutual inhibition (the level of protection by

inhibition is 12g), and e is the intensity of selection within an

ecological cycle (which we specify through ~ee by e~~ee=(1{~ee)). l = 0

means that inhibition is a zero-sum game; in the other extreme

l = 1 means complete spite (no direct benefit for the inhibitor).

Production or resistance of an antibiotic incurs a multiplicative

fitness cost, so that f 0
i ~Pa 1zdZi/j ,PCP

a zdZi/j ,RCR
a

� �{1
is the

bare fitness reflecting the costs CP
a and CR

a of production and

resistance (antibiotic dependent), and d is the Kronecker delta.

Evolution: each antibiotic position in each of the N individuals

mutates within the SRP space of possibilities with probability

specified by a set of transition rates: MS?P~mM0
S?P, MP?S~

mM0
P?S , MS?R~mM0

S?R, MR?S~mM0
R?S , MR?P~mM0

R?P,

MP?R~mM0
P?R.

Parameters for Main Text Figures
N = 106, ~ee = 0.05, l = 0.15, g = 0.7, 40 antibiotics. M0

S?P
~M0

R?P

~1, M0
S?R

~10, M0
P?R

~M0
P?S

~M0
R?S

~100, and m~10{6. The

relative mutation rates assume that loss of function is more likely

than gain of function, and gain of resistance is easier than gain of

production. The no interaction case in Figure 4E corresponds to

~ee = 0. Figures S2 and S3 explore the behavior of the model for

other parameters.

Model Extensions
We examined the behavior of the model when different

antibiotics have different production costs rather than identical

costs. The production costs were uniformly distributed in the

interval ranging from the resistance cost up to the maximal cost for

which a producer can invade a sensitive strain. We discovered that

this extends the region over which we observed balanced

interaction matrices, and leads to receiver-determined matrices

at large resistance costs (Figure S7A). We also added an

evolutionary operator that mimics more closely within-population

HGT—rates of change towards production and resistance of an

antibiotic are proportional to the abundance of production and

resistance to that antibiotic in the population (rather than being

constants). With probability of 1024 an organism pairs with

another random organism and gains a production or resistance for

an arbitrary antibiotic of the donor. Adding within-population

HGT (while keeping the mutations) did not qualitatively change

the results (Figure S7B).

Supporting Information

Figure S1 Sender and receiver degrees are negatively correlated.

(A) Each point shows the sender and receiver degrees for an

isolate. Least square linear fit is also shown. Here, inhibition is

defined as a 1 d delay in appearance time or sporulation

inhibition. (B) Sender degree is not correlated with growth on

non-conditioned media expressed as colony appearance time in

days.

(PDF)

Figure S2 When inhibiting others severely reduces their ability

to inhibit back (small g), a qualitatively new behavior emerges at

high resistance costs. There is a sharp transition to very dense

interaction matrices (every species inhibits almost every other) as

the resistance cost is increased (black region). The balancing

feedback loop fails because antibiotic production can provide more

effective defense than the costly resistance. The system then falls

into a state maintained by mutual inhibition, where many

antibiotics are being produced, resistance to any individual

antibiotic therefore confers no benefit, and the better defense

mechanism becomes the production of yet more antibiotics. The

model still generates balanced and sender-determined interaction

matrices, but only in a particular region of the parameter space

corresponding to low resistance costs and high production costs

(green shades). Same simulation parameters as Panel 4B but with

g= 0.05.

(PDF)

Figure S3 Sensitivity analysis of simulation outcomes. Presented

are the density of interactions and the sender-receiver asymmetry

(colored according to the legend introduced in Figure 4C) for

different parameters. In each panel we specify how the model

parameters differ than those in Figure 4D. A mutation rate of

m = 5 1027 was used unless indicated otherwise. Simulations were

performed for values denoted by blue dots, and nearest neighbor

interpolation was used. For each point the results are averages

over 8 randomly drawn matrices of 64 isolates, and 10 time points

separated by 1,000 generations. Blue regions indicate missing

simulations. (A) The critical g below which a high interaction

density solutions appear is not strongly dependent on l. We set the

production cost to half the maximum cost for which antibiotic

producers can invade a sensitive population, and explored the

resulting matrices for different g and resistance costs at two values

of l. From these diagrams we can read out the maximum g, g*,

that leads to high interaction density solutions. In both cases the

critical value is around 0.15. (B) The statistical properties of

interactions are not sensitive to l. (C) The statistical properties of

interactions depend only weakly on the population size and the

evolutionary rate expressed as number of mutation events per

population per generation. These simulations were performed

with 20 antibiotics rather than 40. (D) Different relative mutation

rates lead to qualitatively similar behavior. Left panel: Different

probabilities to lose or gain function. Right panel: all mutation

rates are identical. (E) Matrices that result with strong interactions:

e= 0.96 (close to the maximum of 1) for g= 0.7 (left panel) and for

g= 0.05 (right panel). The qualitative behavior is the same as in

Figures 4D and S2, but the fraction of interactions is lower, i.e. less

balanced. Notice that the costs of production and resistance are

larger than those in Figure 4D because the interaction strength sets

a scale for the costs.

(PDF)

Figure S4 Dynamic properties of evolved model communities.

(A) An interaction matrix resulting from randomly drawing a

hundred isolates from an in silico community, and sorting them by

phylogeny. (B) Number of generations since separation (x-axis)

versus the sender (green) and receiver (magenta) profile distances

(y-axis) for all isolate pairs. (C) Closely related isolates are less likely

to inhibit each other. Plotted is the probability of inhibition for all

pairs of ‘‘isolates’’ phylogenetically separated by less than a given

number of generations. (D) The steady state is maintained through

turnover of production and resistance profiles. Shown is the

fraction of surviving combinations of production and resistance

between two time points as a function of the number of

generations. Same parameters and solution as in Figure 4C are

used.

(PDF)

Figure S5 Functional diversity is maintained through interplay

between ecology and evolution. (A) Diversity as a function of

evolution rate for simulations with interactions (~ee~0:05, black

circles) and without interactions (~ee~0, red dots). Two organisms
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are considered functionally distinct if they interact differently (as

senders or receivers) with an existing organism. The ecosystem is

ecologically unstable—there is no diversity at low evolutionary

rates. However, in the presence of interactions, diversity increases

rapidly as a function of the rate of evolutionary events in the

population. Diversity is expressed as the exponential of the

Shannon-Wiener Index, and the evolutionary rate per generation

per population is expressed as mN. l = 0.15, g = 0.05, CP
a ~0:03,

CR
a ~10{3, 20 antibiotics, N = 531,440. (B) The ratio of diversity

with interactions turned on to diversity with interactions turned off

increases as a function of the evolutionary rate per population per

population. The increase is approximately linear (blue dotted line

has a slope of one). Data for different evolutionary rates and

population sizes is presented. Parameters, as in (A) and N = 19,680

(dot), N = 59,048 (x), N = 177,144 (+), N = 531,440 (circle),

N = 1,594,320 (triangle), N = 4,782,968 (diamond).

(PDF)

Figure S6 Continuous analysis of intra- versus inter-grain

statistics of interactions reveals enrichment for reciprocity. (A)

The cumulative distribution of appearance times for all pairs

(black) and pairs from the same grain (green) are almost identical.

(B). The cumulative distribution for the difference of appearance

times for pairs of isolates on their reciprocal conditioned media.

The distribution for all pairs is given in black and for pairs from

the same grain in green. Apparent is enrichment for reciprocal/

symmetric interactions. Blue line indicates the position of maximal

difference between distributions. (C) We binary classify the pairs as

reciprocal or non-reciprocal (using the maximal difference found

in B), and compare the intra-grain frequency of reciprocal pairs for

the actual grains (green) and randomized grains (black histogram).

Aerial mycelium inhibitions are treated as complete inhibitions

and set to appearance time of 10 d.

(PDF)

Figure S7 Model extensions. (A) Different antibiotics have

different production costs. Top strip: statistical properties for

simulations with antibiotic production costs uniformly distributed

in the interval from the resistance cost up to the maximal cost for

which a producer can benefit from inhibiting a sensitive strain.

Different squares correspond to different resistance costs. Main: all

antibiotics have the same production and resistance costs. This

leads to mutual inhibition when inhibition is an efficient defense

mechanism (identical to Figure S2). We realized that states of

mutual inhibition are, at least to some extent, an artifact of having

antibiotics with identical production and resistance costs. In the

more biologically realistic scenario in which antibiotics have

diverse production costs, the degeneracy between the antibiotics

will be broken. Less costly antibiotics eventually will become

dominant, therefore selecting for their resistance and leading the

system to lower interaction density. This made us expect that

broadly distributed production costs would extend the region of

balanced interaction frequency at high resistance costs. Indeed, by

simply utilizing an array of antibiotics with broadly distributed

production costs we automatically obtained communities that are

diverse and of balanced interaction frequency, almost indepen-

dently of the resistance cost (top). With distributed production

costs, the matrix properties change gradually from sender-

determined to receiver-determined as we increase the cost of

resistance. (B) A different evolutionary scheme leads to qualita-

tively similar results. In the mutational scheme used throughout

the article the probability to gain and lose functions are constants

independent of the composition of the population. To these

mutations, we add a probability to gain function (production or

resistance) that is proportional to abundance of the function in the

population. In this way we better mimic the effect of horizontal

gene transfer within the population. With probability of 1024 an

organism pairs with another random organism and gains a

production or resistance for an arbitrary antibiotic of the donor.

(PDF)

Figure S8 Time-lapse images of isolates growing on media

conditioned by other isolates. Sample only; the full dataset can be

found online at http://kishony.med.harvard.edu/Vetsigian_sup_

movie_strips/. Presented is the growth of one isolate on eight

different conditioned media. Each interaction is labeled by ‘‘r:x,

s:y,’’ where x and y are the identifying numbers for the receiver

and the sender, and is present in two replicates. Images are shown

for a subset of the measured time points. Above each image is

specified the time after inoculation of the receiver, expressed in

days. Red arrows indicate the colony appearance time; they point

between images if colonies appeared at one of the omitted images.

Red ‘‘S’’ specifies instances of scored sporulation/aerial mycelium

inhibition.

(PDF)
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