
Since the early days of Mendelian genetics, 
in the early 1900s, investigators have real-
ized that interactions between alleles (or 
epistasis) often indicate that alleles are func-
tionally related1. Epistatic interaction can be 
classified as synergistic, additive or antago-
nistic, depending on whether the combined 
effect of two perturbations is greater than, 
equal to or less than predicted on the basis 
of the individual effects2–9 (BOX 1). With the 
advent of molecular genomics, which makes 
it possible to systematically knock out or 
impair genes alone and in combination, and 
to conduct high-throughput phenotypic 
screens, epistasis can now be used to estab-
lish functional connections between genes 
and genetic modules in microbial systems.

Drugs, like genetic perturbations, can 
have synergistic, additive or antagonistic 
effects. Importantly, the analytical tools that 
were developed to assess genetic epistatic 
interactions are now starting to be applied to 
drug interactions, providing the means for 
both uncovering the action of uncharacter-
ized drugs based on their patterns of inter
actions with well understood antimicrobials 
and for understanding the relationships 
between pathways targeted by different 
drugs. While perturbations are combined in 
the laboratory to probe biological systems, 
drugs are also combined for therapeutic pur-
poses. In these settings, synergistic combina-
tions of drugs are typically used to achieve 
maximum therapeutic effect. Nevertheless, 

until recently, the effect of drug interactions 
on the evolution of resistance to drugs has 
not received much attention. Recent studies 
have suggested that antagonistic drug pairs 
can slow down and potentially even reverse 
the evolution of drug resistance10–12.

The main premise of this article is that 
antagonistic interactions between drugs, 
which have been somewhat overlooked, are 
invaluable tools for uncovering biological 
function and underlying network architec-
ture, and can generate a fitness landscape that 
slows down the evolution of antibiotic resist-
ance. We first focus on interactions between 
genes, which provide a useful analogy to 
drug interactions and help introduce some 
of the principal concepts of the relation-
ship between antagonistic interactions and 
biological function. We then shift to drug 
interactions and emphasize similarities and 
differences to the genetic case. Establishing 
the basic concepts of drug interactions then 
allows us to explore the impact of these 
interactions on the evolution of drug resist-
ance. We provide empirical evidence and 
theoretical insight into how antagonistic drug 
interactions, somewhat counter-intuitively, 
restrain the evolution of drug resistance.

Uncovering biological functions
Measuring synergy and antagonism. 
Systematic screens for synergy between 
double gene knockouts have been suc-
cessfully used to understand biological 

systems in bacteria and yeast13–17. Whereas 
such synergistic interactions can be identi-
fied qualitatively by viability scoring, the 
identification of antagonistic interactions 
requires quantitative measurements that 
are more accurate. For example, if a knock-
out of gene A decreases fitness by 1% and 
a knockout of gene B decreases fitness by 
2%, then we expect the fitness of the doubly 
perturbed organism to be ~0.97 if the per-
turbations were additive (1–0.01) (1–0.02) 
(BOX 1). Identifying a synergistic relationship 
can therefore be as simple as discriminating 
fitness values close to 0 from the predicted 
value of 0.97. Identifying antagonism is 
more difficult, however, as even small posi-
tive deviations from the 0.97 prediction 
profoundly change the interaction type: 
a fitness of 0.98 in the doubly perturbed 
organism means that perturbation A is com-
pletely masked by perturbation B, which 
is a strong type of antagonistic interaction 
(BOX 1). Although this asymmetry between 
identification of synergy and antagonism 
is reversed if mutations have large effects 
on fitness (for example, if one gene dele-
tion is lethal but its effect is suppressed by 
another deletion, resulting in a viable dou-
ble mutant), most gene deletions practically 
considered in double knockout studies pro-
duce minor effects. Because of this difficulty 
in identifying antagonistic interactions, 
high-throughput experiments have mostly 
chronicled synergistic interactions13–15,18–20.

Owing to recent technical advancements, 
we can now measure fitness precisely, ena-
bling identification of antagonistic interac-
tions21–28. Such techniques are based on 
quantitative measurements of optical density 
time curves25, on quantitation of colony 
images24,27,29,30 or on measuring direct compe-
tition between mutants and reference strains 
using differential fluorescence labelling31,32. It 
now seems that antagonistic interactions are 
as common as synergistic ones21,22,25,26.

Synergy and antagonism provide functional 
insight. Epistasis can reveal two types of 
relationships between two genes: direct rela-
tionships (specific epistasis between the two 
genes) and indirect relationships (the pat-
tern of their epistasis with other genes). In 
the direct relationship, synergy between two 

 S y s t e m s  m i c r o b i o lo gy  —  o p i n i o n

Drug interactions and the evolution 
of antibiotic resistance
Pamela J. Yeh, Matthew J. Hegreness, Aviva Presser Aiden and Roy Kishony

Abstract | Large-scale, systems biology approaches now allow us to 
systematically map synergistic and antagonistic interactions between drugs. 
Consequently, drug antagonism is emerging as a powerful tool to study 
biological function and relatedness between cellular components as well as to 
uncover mechanisms of drug action. Furthermore, theoretical models and new 
experiments suggest that antagonistic interactions between antibiotics can 
counteract the evolution of drug resistance.

Perspectives

460 | june 2009 | Volume 7	  www.nature.com/reviews/micro

© 2009 Macmillan Publishers Limited.  All rights reserved. 

 



Antagonism 
(directional 
suppression)

Antagonism 
(reciprocal 

suppression)Antagonism

Concentration of drug A (MIC)

Synergy

C
on

ce
nt

ra
tio

n 
of

 d
ru

g 
B 

(M
IC

)

0
25
50
75

100

In
hi

bi
tio

n 
(%

)

Additivity

0
0

1

1

0.50 10.50 10.50 10.5

0.5

1.5

0

1

0.5

1.5

0

1

0.5

1.5

0
0 10.5

0

1

0.5

1.5

1

0.5

1.5

φ

B
A+B

A
φ

BA+BA

φ

B
A+B

A

φ

B
A+B

A

φ

BA

a

b

A+B

perturbations generally suggests that the 
two targets carry out the same function. For 
example, they may be enzymes that catalyse 
reactions that generate the same product 
(FIG. 1a). Antagonism in the direct relation-
ship could occur in two different ways. First, 
if each of the two mutations individually 
causes complete loss of function in the same 
non-essential pathway, then the effect of 
each of the individual deletions will be iden-
tical and will be equal to the effect of their 
combination (FIG. 1a). This type of antago-
nistic interaction, called co-equality25 or 
non-directional buffering33, can be found, 
for example, between two enzymes in the 
same linear metabolic pathway33 or between 
two components of the same protein com-
plex25,34. Second, perturbations that cause 
partial loss in two different functions that 
are each individually essential for growth 
can result in another type of antagonism, 
called directional buffering, in which the 
combined effect of the two perturbations 
is equal to the most limiting of the two33 

(FIG. 1a). For example, two mutations that 
reduce the rates of synthesis of two build-
ing blocks of an essential product will have 
such an antagonistic effect, as if one of these 
rates becomes limiting for growth then it 
effectively masks perturbations in the other, 
non-limiting, rate.

Functional relatedness between two 
genes can also be inferred from their indi-
rect relationships. Similarity in the way in 
which two genes interact with other genes 
has been used to suggest functional relat-
edness in metabolic networks33, secretory 
pathways23 and multiprotein complexes29. 
A related concept is the idea of ‘mono-
chromatic’ modularity, whereby genes are 
grouped into classes such that members of 
one class interact with members of another 
class in only one way — either synergisti-
cally or antagonistically33. This approach 
highlights the idea that epistasis at the gene 
level reflects epistasis at a higher hierarchi-
cal level (that is, between the two biological 
functions that are perturbed). All genes 
contributing to one function should then 
interact in a similar way with all genes par-
ticipating in another function (FIG. 1b). Thus, 
this approach extends the concept of epista-
sis from the gene level to the system level of 
interactions between functional modules. 

Pharmacalogical interactions. The above 
ideas can be extended to pharmacological 
interaction networks (see Further informa-
tion for a link to the Literature-curated 
Drug Network). Similarly to genes, drug 
interactions can be classified based on 

the deviation of their combined effect 
from a predictive additive effect of their 
individual outcomes. Such drug interac-
tion networks could be used to classify 
drugs by the cellular function they inhibit, 
namely by their underlying mechanism 
of action. Consider several subsets of 
drugs — 1, 2 and 3 — in which all drugs in 
group 1 interact antagonistically with all 

drugs in group 2 and synergistically with 
all drugs in group 3 (FIG. 1b). Now, consider 
a new drug, X, with an unknown function 
that also interacts antagonistically with all 
drugs in group 2 and synergistically with 
all drugs in group 3. This would suggest that 
drug X functions similarly to drugs from 
group 1 (FIG. 1b). Alternatively, if a new drug 
Y cannot be placed in any known group 

Box 1 | Defining drug interactions: Bliss independence and Loewe additivity

Interactions between drugs are, in principle, analogous to genetic interactions, except for the 
additional complexity of dosage variability. There has been debate about the appropriate way to 
define drug interactions (reviewed in REF. 4). Antagonistic and synergistic classifications usually 
rely on deviations from additivity. Properly defining additivity is therefore crucial for classification 
of drug interactions. There are two main methods for defining additivity. 

Bliss independence
Bliss independence3 assumes that the relative effect of a drug at a particular concentration is 
independent of the presence of the other drug. For example, if drugs A and B individually cause 
growth inhibition of 50% each, then Bliss independence predicts that, in combination, drugs A and 
B decrease growth by 1–0.5*0.5, or 75%. Positive or negative deviations from this prediction 
describe synergistic and antagonistic interactions, respectively (see the figure, part a; φ represents 
no drug). A special class of antagonism, called suppression (or hyper-antagonism), occurs when the 
combined effect of the two drugs is weaker not only compared with their expected additive effect, 
but also compared with one (directional suppression) or both (reciprocal suppression) of their 
individual effects.

The Bliss definition is simple, easy to measure and provides an exact analogy to the definition  
of epistasis that is conventionally used for genetic perturbations7,9. However, it does not account 
for nonlinearity in the dose response curve of each of the individual drugs and therefore 
conflates deviation from additivity due to the interactions between the drugs with deviations 
due to the increase in total drug dosage.

Loewe additivity
Loewe additivity2 defines a drug as non-interacting with itself. If drugs A and B are in fact the same  
or similar drugs, then we expect their combined effect at equal concentrations to be identical to the 
effect of one of the drugs in double the dose. For example, 0.5 minimum inhibitory concentration 
(MIC) of drug A combined with 0.5 MIC of drug B (+ in the figure, part b) is equivalent to 1 MIC of 
drug A or 1 MIC of drug B in an additive drug pair. In other words, drugs are additive according to 
Loewe if their inhibition is constant along lines of equal effective dosage in the drug concentration 
space. Lines of constant inhibition, called isoboles, can be measured by acquiring phenotypic data 
across a two-dimensional range of dosages of the drugs. Linear isoboles define non-interacting 
drugs; concave isoboles define a synergistic drug pair, which in combination provide the same 
effect for less dosage; convex isoboles define an antagonistic drug pair, which in combination 
requires increased dosage to achieve the same effect; and non-monotonic isoboles define 
reciprocal and directional suppression (see the figure, part b).
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without violating the monochromaticity of 
the interaction of this group with all other 
groups, this could indicate that drug Y has 
a novel, as-yet-unidentified mechanism of 
action. Finally, if a drug cannot be placed 
in any group and cannot be placed alone 
without a mixed synergistic–antagonistic 
interaction pattern with one of the existing 
groups, this could indicate that the drug 
has multiple mechanisms of action. These 
ideas and methodologies have been used to 
classify antibiotics in a pair-wise interaction 
network35 (FIG. 1c).

There are important differences 
between genetic and drug interactions. 
Most notably, genetic studies often focus 
on gene deletions, which confer complete 
loss of function. Drugs, by contrast, carry an 
inherent variability owing to dosage. That 
is, genetic perturbations can be considered 
as on–off switches, and pharmacological 
perturbations as continuous ‘dimmers’. The 
variability of drug dosage complicates the 
basic question of how to define interactions 
between drugs, especially as the type of 
interaction can vary with dosage. Bliss inde-
pendence (which ignores this variability and 
only considers interactions between fixed 
drug dosages) and Loewe additivity (which 
considers the full dose-by-dose two-dimen-
sional response function) are two commonly 
used approaches (BOX 1). The richness of the 
dose-by-dose interaction pattern contains 
valuable information on the underlying con-
nectivity between the molecular targets of 
two drugs36,37.

Slowing evolution of resistance
Although antagonistic interactions have 
begun to be appreciated for their ability to 
uncover gene and drug functions, they are 
generally avoided in the clinical world of 
antimicrobials. As synergistic drug combi-
nations generate increased efficacy at lower 
doses, synergy has long been used by clini-
cians38. This may explain the bias observed 
towards synergy in the antibiotic interaction 
literature compared with the roughly equal 
frequencies of synergy and antagonism 
found in systematic studies35. This bias, 
together with recent in vitro laboratory 
studies showing that antagonism can slow 
down the evolution of drug resistance10,12, 
provides motivation to explore the possibil-
ity that antagonism might have some unap-
preciated effects on the evolution of drug 
resistance.

An extreme example that illustrates the 
impact of antagonism on the evolution 
of resistance is suppression, or ‘hyper-
antagonism’, in which the combined effect 

Figure 1 | A functional relationship between pathways can be revealed by the direct epista-
sis link between them and by the similarity of their epistasis interaction patterns with 
other pathways. a | Perturbations in different simple architectures of metabolic networks. 
Synergy is formed between perturbations in two alternative pathways that produce the same 
product. Each perturbation alone has little effect, as the flux can continue through the alterna-
tive pathway33,65. Together, however, their effect is stronger, as their joint product can no longer 
be formed. Antagonism can occur in partial loss of function of two parallel pathways for build-
ing blocks of a single essential product. The most limiting pathway masks perturbation in the 
other pathway. A special type of antagonistic interaction, called co-equality, is formed when 
two perturbations completely inhibit two different targets within a linear pathway of an impor-
tant but unessential metabolite. Each perturbation alone completely stops the flux through the 
pathway, neutralizing the effect of the other perturbation. b | Functional relatedness between 
two perturbed pathways can be inferred by the similarity of their interactions with other per-
turbations. The schematic on the left shows eight drugs (A–H) for which drug pairs interact 
synergistically (red lines), antagonistically (green lines) or additively (no lines). The middle sche-
matic shows how drugs can be grouped into functional classes (dashed ovals) that interact with 
each other monochromatically (that is, with purely antagonistic or purely synergistic interac-
tions between any two clusters). The schematic on the right shows a simplified network of a 
system-level view, showing the main groups and the interactions among them. c | This concept 
was used to generate a system-level view of antibiotic interactions based on data for all pair-
wise combinations of 21 drugs. Figure modified, with permission, from Nature Genetics ref. 35 
 (2006) Macmillan Publishers Ltd. All rights reserved.
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of two drugs is smaller than that of one of 
the drugs alone (BOX 1). Suppressive inter-
actions between drugs were first docu-
mented in 1872 by Fraser39, who noticed 
that the toxic effect of physostigma, a 
toxin that causes paralysis and death, 
can be relieved by another drug, atropia. 
Fraser called this interaction ‘physiologi-
cal antidote’ to emphasize that the drugs 
do not inhibit each other through direct 
chemical interaction, but rather that the 
suppressive interaction reflects specific 
relationships between the two physiological 
pathways inhibited by the drugs39.

Suppressive drug combinations select 
against resistant bacteria. Although sup-
pressive interactions have received attention 
in pharmacology, they have been almost 
completely neglected in the context of 
antimicrobials. Nevertheless, such sup-
pressive interactions between antibiotics, 
although uncommon, are not very rare. 
A systematic study of interactions between 
antibiotics showed that suppression often 
occurs between protein synthesis inhibitors 
and DNA synthesis inhibitors. Although 
the specific mechanistic reasons for this 
effect are not understood, it is worth men-
tioning a different, yet potentially related, 
phenomenon called the Eagle effect40. Eagle 
and Musselman40 first pointed out that the 
dose response curve of a single antibiotic 
is not always monotonic; for some drugs, 
increased dosage beyond a certain point 
actually decreases their effects. This effect is 
most strikingly observed as an isolated ring 
of growing bacteria around the inhibition 
zone in a disc-diffusion assay. This phenom-
enon is most pronounced when DNA syn-
thesis inhibitors, such as ciprofloxacin, are 
used41,42. Similarly to suppressive drug com-
binations, the inhibitory effect of a DNA syn-
thesis drug is cancelled, but owing to its own 
presence rather than that of a second drug.

Suppressive drug combinations have 
been shown to reduce inhibition power 
at fixed drug dosage, but their impact on 
the evolution of drug resistance (FIG. 2) has 
received little attention until the past few 
years. Recently, it has been shown that sup-
pressive interactions have the potential 
advantage of selecting against resistant bac-
teria10 (FIG. 2a–c). Consider a case in which 
drug A partially suppresses the effect of 
drug B. What selection advantage would be 
conferred to a mutant that becomes resist-
ant to drug A? To begin with, we can adopt 
the simplified assumption that resistance to 
a particular drug is effectively equivalent 
to the bacteria ‘not seeing’ the drug at all. 

Under this assumption, bacteria that acquire 
resistance to drug A lose its partial protec-
tiveness against drug B, and therefore lose 
in competition with the drug-sensitive wild 
type (FIG. 2b,c). This simple idea was recently 
explored in a study of selection for doxy-
cycline resistance10. As expected, bacteria 

resistant to doxycycline outcompeted their 
sensitive wild-type cousins when exposed 
to doxycycline. The selective advantage of 
resistance is even further enhanced when 
doxycycline is combined with the syner-
gistic drug partner erythromycin, as in this 
case resistance to doxycycline effectively 

Figure 2 | Suppressive drug combinations can reverse selection for resistance. a | In synergistic 
drug pairs, the effect of antibiotics is larger when combined together. Resistance mutations to 
either drug (for example, drug A) are favourable for the bacteria and allow a subsequent favourable 
resistance mutation to the other drug (for example, drug B). Development of multidrug resistance 
could occur by sequential single-drug resistance steps. φ represents no drug. b | Resistance is less 
likely to occur in reciprocally suppressive drug combinations, as each single-drug resistance step 
(dashed arrows) is unfavourable. c | Although the ideal case of reciprocal suppression has not been 
observed in antibiotics, unidirectional suppression (one drug suppresses the effect of the other) is 
not very rare. Here, drug B reverses selection for resistance to drug A, but drug A does not reverse 
selection for resistance to drug B. In such cases, the population is not fully locked in a sensitive state 
(as occurs in b), but this tactic could slow resistance. d,e | The same idea can be understood in a more 
refined model that accounts for drug dosages. As drug resistance means that the bacteria effec-
tively see a reduced concentration of the drug, the growth region of resistant mutants  could be 
approximated as a geometrical rescaling of the growth region of the wild type. This same rescaling 
leads to profoundly different outcomes in synergy versus antagonism. In the synergistic case (d), the 
growth region of the resistant mutant is completely inclusive of that of the wild type. In the antago-
nistic case (e), however, there is a region of drug concentrations (asterisk) where the wild-type strain 
can grow, but the resistant mutant cannot10. f,g | Direct competition of doxycycline-sensitive (doxS) 
and doxycycline-resistant (doxR) Escherichia coli strains revealed selection against resistance. 
Resistant and sensitive cells were differentially labelled, inoculated at 1:1 into an array of drug 
environments (black dots) and counted by flow cytometry after 24 hours. In the drug environment 
of the synergistic pair doxycycline–erythromycin, the resistant strain always wins (f), but in the 
antagonistic pair of doxycycline–ciprofloxacin, the sensitive strain outcompetes the resistant strain 
under certain drug ratios (g).

P e r s p e c t i v e s

nature reviews | Microbiology	  Volume 7 | june 2009 | 463

© 2009 Macmillan Publishers Limited.  All rights reserved. 

 



a

c

Fr
eq

ue
nc

y 
of

 re
sis

ta
nc

e
M

IC
M

IC

MIC

MIC MPC

MPC

Drug concentration (A)

D
ru

g 
co

nc
en

tr
at

io
n 

(B
)

MIC MPC

MSW

0

1

0

10–8

10–4

Drug concentration (A)

Fr
eq

ue
nc

y 
of

 
re

sis
ta

nc
e

b

θ

450 90
1

102

10

103

M
SW

θ (°)

removes both the burden of doxycycline and 
the doxycycline-enhanced burden of erythro-
mycin (FIG. 2f). However, when ciprofloxacin, 
a drug suppressed by doxycycline (known 
as directional suppression; FIG. 2c) is added, 
bacteria resistant to doxycycline are outcom-
peted by sensitive wild-type cells (FIG. 2g). 
Suppressive drug combinations can therefore 
invert selection and select against mutants 
resistant to one of the drugs.

Antibiotic resistance can occur through 
various mechanisms, including enzymatic 
modification or degradation of a drug, pump-
ing of a drug out of the cell by efflux pumps 
and modification of a drug target. All of 
these mechanisms decrease the effective con-
centration of a drug, as encountered by the 
bacteria. Thus, a more refined approximation 
of resistance is that drug-resistant bacteria 
effectively ‘experience’ a lower drug dosage. 
Consequently, resistance can be approxi-
mated as a rescaling of drug concentrations 
(FIG. 2d,e). In synergistic interactions, the 
rescaled area of growth of resistant mutants 
in the two-drug dosage space includes the 
entire area of growth of the wild-type strain; 
resistant cells can grow in any of the drug 
concentrations at which the sensitive bacteria 
can grow (FIG. 2d,f). In the suppressive case, the 
impact of this same rescaling is profoundly 
different: resistant bacteria cannot grow in 
part of the drug space that allows growth of 
the sensitive bacteria (asterisk in FIG. 2e). In 
this area, resistant strains lose in competi-
tion against wild-type drug-sensitive strains 
(FIG. 2g). This geometric rescaling model 
explains why the selection against resistant 
bacteria is largely independent of the specific 
mechanism by which resistance is encoded; it 
works effectively against resistance encoded 
by an efflux pump, enzymatic degradation or 
target modification10.

Antagonism may reduce evolution of  
resistance. Do different drug interactions 
increase or decrease the overall potential 
for the evolution of resistance? For environ-
ments involving a single drug, a key factor 
that affects the propensity for evolution of 
resistance is the frequency of resistant muta-
tions as a function of drug dosage (FIG. 3a). 
Typically, as drug dosage increases, bacteria 
exhibit a step-wise decrease in the number 
of resistant colonies (FIG. 3a), with an initial 
drop at the minimum inhibitory concentra-
tion (MIC) — owing to  selection against the 
wild type — followed by one or more sub-
sequent plateaus and steps that reflect selec-
tion against different common mutants. The 
drug concentration that corresponds to the 
final step, at which the frequency of resistant 

mutations drops below a detectable level, is 
termed the mutant prevention concentration 
(MPC). As evolution requires both mutations 
and selection, resistance is thought to evolve 
primarily at drug concentrations below the 
MPC but above the MIC43,44, a region termed 
the mutant selection window (MSW)45,46 
(FIG. 3a). As drug concentrations fluctuate in 
time and space in and out of the MSW, the 
size of the MSW is thought to influence the 
chance that resistant bacteria will evolve45–55. 
It is worth noting, however, that in addition 
to the time within the MSW56, other factors, 
such as the time spent at low and high drug 
concentrations within the MSW, are also 
important57.

The concept of the MSW can be naturally 
extended from single-drug to multidrug 
treatments (FIG. 3a,b). But how is the size of the 
MSW affected by multidrug treatment? A few 
studies examined the MSW in several drug 
pairs and demonstrated that although some 
drug combinations can substantially nar-
row the MSW12,58 (FIG. 3c), others cannot. To 
understand the impact of drug combinations 
and of the interaction between drugs on the 
size of the MSW, we need to consider a model 
that can predict the number of resistant colo-
nies appearing in a multidrug environment. 

The simplest model for the mutant frac-
tion of the population that can survive and 
grow in a multidrug environment assumes 
that the probability of mutations that allow 
growth to a particular concentration in drugs 
A and B is equal to the multiplication of the 
probabilities of mutations that allow growth 
to drug A alone and drug B alone at their 
particular concentrations. It is easy to see how 
this simplified model fails when mutations 
confer resistance to both drugs simultane-
ously (known as pleiotropy or positive cross-
resistance) or when resistance to one drug 
confers hypersensitivity to another (known 
as negative cross-resistance). However, even 
with no cross-resistance (when the muta-
tions that confer resistance to each of the 
two drugs are completely independent), 
the simple multiplication model does not 
work. Consider, for example, an environ-
ment in which both drug A and drug B are 
at a concentration of half their MIC (+ in 
BOX 1, figure). If the drug combination is 
synergistic, wild-type bacteria cannot grow 
and the fraction of cells that can grow will 
be much smaller than one. By contrast, if the 
drug combination is antagonistic, wild-type 
bacteria can grow and the frequency of cells 
able to grow in the presence of the drugs will 
approach 1. In both cases, however, the abil-
ity of the bacteria to grow in the presence of 
either of the individual drugs at the assumed 

Figure 3 | Drug interactions affect the mutant 
selection window. a | Schematic of the fre-
quency of spontaneous resistance mutations as a 
function of drug concentrations for a single-drug 
environment46. The point at which the frequency 
drops to undetectable values is called the mutant 
prevention concentration (MPC). As evolution 
requires both mutations and selection, evolution 
is thought to proceed primarily below the MPC 
and above the minimum inhibitory concentration 
(MIC). This region is called the mutant selection 
window (MSW). b | The concept of the MSW can 
be extended to multidrug combinations, for which 
it becomes the area (red) between the MIC line 
(solid) and MPC line (dashed) in the drug–drug 
concentration space. A fixed drug ratio corre-
sponds to a linear line with angle θ that extends 
from the origin and is associated with an effective 
MSW. c | Data for fusidic acid and erythromycin 
show that some drug ratios can decrease the 
MSW, compared with the MSW of single drugs. 
Recent experiments and modelling suggest that 
the best reduction in MSW can be achieved by 
greater antagonistic interactions and lower  
cross-resistance12.
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0.5 MIC concentrations is 1 (as even the wild 
type can grow), and therefore the prediction 
for the ability of the bacteria to grow in the 
multidrug environment based on multiplica-
tion will also be 1. A predictive model for the 
number of resistant colonies in multidrug 
combinations must therefore account both 
for cross-resistance between the drugs and for 
drug interactions (synergy or antagonism).

A first attempt to develop such a model 
was described by Michel and colleagues12. 
Their model incorporates drug interactions 
and cross-resistance, making the assumption 
that each mutant experiences the same drug 
interactions as the wild type. That is, resistant 
mutants see an effective reduction in drug 
concentrations, and their region of growth 
in the two-drug space can be approximated 
by rescaling the region of growth measured 
for the wild type (FIG. 2d,e). This assumption 

yields a model that predicts the frequency of 
mutations allowing growth in multidrug envi-
ronments based on the profile of resistance to 
each of the single drugs as a function of drug 
dosage, the level of cross-resistance between 
the drugs and the type and extent of their 
interaction. Model predictions agreed with 
high-throughput measurements of resistance 
frequencies over the two-dimensional, drug-
dose space for several different drug pairs. 
Importantly, this model suggests that, for 
fixed levels of cross-resistance, antagonistic 
drugs decrease the size of the MSW more 
than do synergistic drugs.

At drug concentrations below the MPC, 
resistant mutants will appear, but how 
long will it take for the whole population 
to become resistant? As shown in FIG. 2, 
mutations that confer resistance to a single 
drug may be more beneficial for bacteria 
in multidrug synergistic treatments than in 
antagonistic treatments. With synergistic 
drugs, single-drug resistance mutations not 
only remove the effect associated with one 
of the drugs, but also remove the synergy 
with the other drug. With antagonistic 
drugs, by contrast, removing the effect of 
one of the drugs will actually reveal the pre-
viously suppressed effect of the other drug 
(FIG. 2b,c). These expected differences in the 
fitness advantage that resistant mutations 
confer in multidrug environments suggest 
that the rate of adaptation of the population 
may actually be faster in synergistic drug 
environments (we define the rate of adapta-
tion as the rate at which the average fitness 
of the population increases as resistant 
mutants spread in the population; FIG. 4a). 
A study designed to test this prediction 
has used automated parallel evolutionary 
adaptation experiments, in which bacte-
rial populations are propagated in differ-
ent drug combinations over hundreds of 
generations while their fitness increase is 
monitored continuously11. Results of this 
study showed that synergy accelerates the 
rate of adaptation relative to antagonistic 
drug combinations (FIG. 4b).

Microbial adaptation in multidrug  
environments provides a fascinating case of 
evolution in multidimensional phenotypic 
space, where the fitness could be a strongly 
nonlinear function of the phenotypic axes. 
These nonlinearities can generate interest-
ing and non-intuitive dynamics, including 
inversion of selection towards sensitivity 
and away from resistance. The implications 
of these population genetic findings to 
clinical settings are not trivial. It is unclear 
whether antagonistic drug combinations 
will be effective at forestalling the evolution 

of resistance in vivo and to what extent 
they could be applied more generally to 
other diseases, such as HIV59, malaria60 and 
cancer66. Many factors affect the success of 
clinical treatments, including pharmaco
kinetics, heterogeneous drug concentra-
tions, horizontal gene transfer, interactions 
with other microbial species and host 
interactions61–63. Of course, one important 
consideration against the use of antagonistic 
drug combinations is their reduced efficacy, 
which leads to longer time for infectious 
clearance, thereby increasing the chance for 
the evolution of resistance64. Furthermore, 
ethical considerations, such as balancing the 
interests of populations versus individuals, 
must inform the choice between antagonistic  
and synergistic drugs in treatments.

Conclusion
New technological advances, including 
automated parallel measurements of bac-
terial growth in competition assays, now 
allow us to make accurate classifications of 
epistatic interactions between drugs, lead-
ing to a richer understanding of the func-
tion of elements in biological networks. 
Having both synergistic and antagonistic 
interactions mapped in the same system 
allows us to find patterns that would be 
missed if only one class of interaction were 
considered. Laboratory experiments and 
theoretical modelling show that antago-
nistic interactions select against resistant 
alleles, narrow the range of drug concen-
trations in which evolution of resistance 
occurs and slow down the rate of evolution 
through spontaneous mutations. Further 
study of antagonistic drug combinations 
may be useful when evaluating effective 
multidrug treatments. The choice between 
synergy and antagonism may involve a 
trade-off between immediate efficacy of 
inhibition of microbial growth and future 
forestalment of the evolution of resistance.
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Figure 4 | Evolution in various antibiotic com-
binations reveals an accelerated rate of 
adaptation in synergistic drug pairs. Bacterial 
populations were grown in an automatic robotic 
system with daily dilutions in different drug pairs 
and concentration ranges (~200 different condi-
tions). a | Growth rate of one typical population, 
showing adaptation time (T

1/2
) and fitness gain 

(Δ). The inset shows the daily growth rates, which 
were measured by continuous optical density 
(OD) monitoring (first day, green; eighth day, red).  
b | The adaptation rate (Δ/T

1/2
) is negatively cor-

related with drug interactions; synergistic drug 
pairs accelerate the rate of adaptation. Figure 
modified, with permission, from REF. 11 (2008) 
National Academy of Sciences.
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