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SUMMARY

Synonymous codon choices at the beginning of
genes optimize 50 RNA structures for enhanced
translation initiation, but less is known about mecha-
nisms that drive codon optimization downstream
within the gene. To understand what determines
codon choices across a gene, we generated 12,726
in situ codonmutants in the Escherichia coli essential
gene infA and measured their fitness by combining
multiplex automated genome engineering mutagen-
esis with amplicon deep sequencing (MAGE-seq).
Correlating predicted 50 RNA structure with fitness
revealed that codons even far from the start of the
gene are deleterious if they disrupt the native 50

RNA conformation. These long-range structural in-
teractions generate context-dependent rules that
constrain codon choices beyond intrinsic codon
preferences. Genome-wide RNA folding predictions
confirm that natural codon choices far from the start
codon are optimized in part to prevent disruption of
native structures near the 50 UTR. Our results shed
light on natural codon distributions and should
improve engineering of gene expression for synthetic
biology applications.

INTRODUCTION

Genome-wide biases in codon usage have been attributed to

intrinsic preferences and to context-dependent effects. Intrinsic

preferences refer to a general benefit of some codons over

others, based on translation speed (Elf et al., 2003; dos Reis

et al., 2004; Sharp and Li, 1987; Sørensen et al., 1989), transla-

tion accuracy (Drummond and Wilke, 2008; Stoletzki and Eyre-

Walker, 2007), and other properties (Gingold and Pilpel, 2011;

Novoa and Ribas de Pouplana, 2012; Plotkin and Kudla, 2011).

In contrast, context-dependent codon preferences occur when
Cell
codon effects depend on short-range neighboring sequences

or on longer range distant sequences. Short-range context

dependence appears, for example, when adjacent codons

create inhibitory sequences (Gamble et al., 2016; Tats et al.,

2008). Longer range dependences can be generated at the

beginning of genes by selection for decreased strength of

RNA secondary structures in the 50 UTR (Bentele et al., 2013;

Goodman et al., 2013; Gu et al., 2010; Kudla et al., 2009). How-

ever, less is known about long-range context-dependent effects

in later gene regions.

Understanding context-dependent codon preferences within

a gene requires systematically measuring the effects of

codon substitutions in the gene’s native chromosomal

context. However, current methods for systematic mutagen-

esis and phenotyping of large mutant populations typically

use plasmid-based expression rather than in situ chromo-

somal modification (Boucher et al., 2014; Fowler and Fields,

2014). Alternative chromosomal editing methods are usually

unable to achieve the throughput necessary for comprehen-

sive analysis. Computational genome-wide methods have

been successful at identifying intrinsic preferences but may

average out context-dependent effects that occur at specific

positions. Such limitations have impeded the identification of

factors that determine optimal codon usage within individual

genes.

Here, we quantify intrinsic and context-dependent codon

preferences throughout an essential gene by generating system-

atic libraries of single-codon and codon-pair mutants directly on

the E. coli chromosome. Codon choice is particularly important

within essential genes, where it can greatly affect fitness (Agashe

et al., 2013; Lajoie et al., 2013; Lind et al., 2010). To understand

such effects, we focused on understanding codon preferences

within a single gene, infA, a highly expressed and essential

gene of E. coli that encodes the universally conserved translation

Initiation Factor 1 (IF1) (Croitoru et al., 2004; Gualerzi et al., 1989).

This focus enabled us to comprehensively explore the fitness

landscapes of single-codon and codon-pair mutants and

to directly quantify and compare intrinsic versus context-

dependent codon effects. We apply motif analysis and RNA

structural analysis to identify key features that generate
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mailto:hw2429@columbia.edu
mailto:rkishony@technion.ac.il
http://dx.doi.org/10.1016/j.cels.2016.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2016.11.004&domain=pdf


A

B

C

Figure 1. Systematically Generating and Measuring Fitness of All

Single-Codon Substitutions across infA Using MAGE-Seq

(A) MAGE oligos for creating all single-codon mutants scanning along infA on

the E. coli chromosome.

(B) Mutants were pooled and competed in continuous exponential growth.

Samples were taken at every population doubling, and mutant frequencies

were measured using deep sequencing of PCR amplicons.

(C) Mutant fitness is calculated from the slope of best-fit lines tracking mutant

abundance relative to the wild-type allele over time. Dotted line shows

the dilution rate, which is the expected slope for non-growing cells. Error bars

are 2 SDs.
context-dependent codon preferences and generalize these

findings with evolutionary conservation and genome-wide

bioinformatics.

RESULTS

Comprehensive Single-Codon Mutagenesis of infA
Using Multiplex Automated Genome Engineering
Sequencing
To measure fitness of codon mutants in high throughput,

we developed MAGE-seq, a method combining multiplex

automated genome engineering (MAGE) (Wang and Church,

2011; Wang et al., 2009), an optimized iterative variant of sin-

gle-stranded DNA-mediated recombineering (Sawitzke et al.,
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2013) that generates large-scale and systematically designed

libraries of chromosomal variants (Figure 1A), with fitness mea-

surements based on amplicon deep sequencing (Figures 1B

and S1; Table S1; STARMethods). Scanning across the genome

using MAGE-seq enables the study of whole genes or regions of

interest with arbitrary lengths by tiling: mutations are introduced

usingMAGEwithin regions of up to 30 nucleotides in length, then

the pool of mutants is exposed to selective pressures that

increases or decreases the abundance of individual mutants.

Sequencing each MAGE pool with paired overlapping Illumina

reads and quantifying mutant enrichment relative to the wild-

type (WT) allele enables the assembly of fitness data for all mu-

tants. We use separate barcodes during library prep to detect

and reduce sources of experimental error. MAGE-seq thus en-

ables rapid generation and quantitative phenotyping of mutant li-

braries and can be used to map fitness landscapes for functional

elements anywhere on the E. coli genome.

We applied MAGE-seq to infA, a highly expressed and essen-

tial gene of E. coli that encodes translation Initiation Factor 1

(IF1). We created all possible single-codon mutants scanning

along the entire length of the gene (63 codon mutants 3 73 po-

sitions = 4,599 mutants; eight MAGE pools). We then inoculated

the pooled mutant population into rich or minimal liquid media

and grew them for ten generations while continuously diluting

the cultures tomaintain exponential phase. By sampling the pop-

ulation and deep-sequencing the mutated regions at multiple

time points, we measured g, the exponential rate of change of

mutant frequency relative to the wild-type allele (best-fit slope,

Figure 1C). We then define the fitness of each mutant as f =

(g/d) + 1, where d is the dilution rate of the culture (d = 1.23

and 0.43 doublings/hour for rich and minimal media, respec-

tively). Thus, a mutant with f = 1 grows as fast as wild-type while

amutant with f = 0 does not grow and is depleted from the culture

at the dilution rate. Performing the competition immediately after

mutagenesis enabled us to detect all mutants in the library,

including non-growing null mutants that are depleted at the

rate of dilution (Figure 1C). Although MAGE is known to increase

the background frequency of genomic mutations (Nyerges et al.,

2014), the combination of a small library size and a large popula-

tion ensured that each mutant was created many times (>104),

thereby reducing the effects of background mutations. These

experiments led to precise mutant fitness values that corre-

sponded well with measurements from single-codon mutants

generated via gene replacement (Figure S2) (Croitoru et al.,

2004).

As expected, introducing early stop codons or mutating the

start or stop codon of the gene is highly deleterious (Figures

2A and S3A). Nonsense mutations have null fitness values

throughout the gene, except close to the C terminus, where

the protein tolerates early truncation of 2 amino acids. Substitu-

tions of the start codon have null fitness, except for alternative

start codons such as GTG (Figure S3A). Mutations of the wild-

type stop codon, which append 36 additional amino acids at

the C terminus, are also deleterious.

Analysis of Single-Codon Mutant Fitness
Understanding synonymous mutations requires first accounting

for the effects of different amino acids at each position. To sepa-

rate the effects of codon and amino acid substitutions, we
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Figure 2. Context-Dependent Codon Preferences of infA Are Strongest at the Beginning of the Gene

(A) Fitness of all single-codon mutants of infA in minimal media (Figure S3 shows rich media). The optimal codon for each amino acid varies with position,

indicating context dependence. Circles indicate WT codons; horizontal lines separate synonymous codons. Background color indicates average effect of each

amino acid substitution (faa), while colored X’s indicate synonymous fitness deviations (fsyn). For clarity, we remove X’s for start and stop codons and set fsyn to

zero in the later gene region for the most deleterious mutants (positions 10–71, faa < 0.75), which have higher measurement error (fstd). Larger X’s indicate more

significant Z scores (fsyn/fstd).

(B) Intrinsic codon preferences averaged over later gene regions (f*syn, positions 10–71). Error bars are 2 SEMs. Bottom: correlation between intrinsic codon

preferences and the tRNA adaptation index (tAI).

(C) Comparison of SD of fitness for amino acid substitutions (saa) and synonymous deviations (ssyn, mutants with faa < 0.75 not included in calculation).

Synonymous codon preferences are strongest at the beginning of the gene (positions 1–9).
averaged the fitness of all codons synonymous for each amino

acid at each position to yield faa, then subtracted faa from each

codon’s fitness to create a synonymous fitness deviation matrix

fsyn = f � faa (Figures 2A and S3B). Focusing on the amino acid

effects faa, we observed that specific sets of amino acid substi-

tutions were deleterious at multiple positions across the gene.
Principal-component analysis showed that the effects of most

amino acid substitutions can be explained by only four principal

components, reflecting key amino acid properties of hydropho-

bicity, flexibility, size, and charge (Figure S4; Table S2). The

weights of these principal components vary across positions,

indicating differential requirements for each property within the
Cell Systems 3, 563–571, December 21, 2016 565



A

B

Figure 3. Analysis of Codon-Pair Interactions Near the Start of the

Gene Reveals Deleterious Effects of Frameshifted Start Codons

(A) MAGE oligos for creating all codon-pair mutants at positions 1–2 and 2–3.

(B) Average fitness of codon pair mutants with in-frame ATG start codons (gray

bars) versus frameshifted start codons (colored bars), relative to mean library

fitness (fo). Error bars are 2 SEMs.
core of the protein and at the interface with the 30S ribosome

(Figure S4E). This analysis provides an unbiased way to reveal

the key patterns of how fitness depends on amino acid proper-

ties throughout a gene.

We next focused on the effects of synonymous codons. Syn-

onymous codon substitutions had the strongest effect in the

beginning of the gene (positions 1–9), yet were also detectable

in later gene regions, especially in rich media (positions 10–71)

(Figure S5C). For the latter gene region, we measured intrinsic

codon preferences, f*syn, by averaging synonymous deviations

across all positions (positions 10–71; codon averages were

calculated with individual measurements weighted by inverse

fitness variances). Intrinsic preferences, while small (SD

f*syn �0.004), were correlated with genomic codon bias mea-

sures such as tRNA adaptation index (tAI) (dos Reis et al.,

2004) (Figure 2B). At the beginning of the gene, synonymous de-

viations were strong, often dominating over the effects of amino-

acid substitutions (Figure 2C). In this region, codon preferences

depend strongly upon context (i.e., the best codon for a given

amino acid differed across positions) (Figure S3).

Systematic Codon-Pair Mutagenesis Reveals Beneficial
and Deleterious Sequence Motifs
To better understand the origins of codon preferences within

infA, we measured the fitness of codon-pair mutants at the start

of the gene, where synonymous fitness deviations were strong

and highly context dependent. We used MAGE-seq to generate
566 Cell Systems 3, 563–571, December 21, 2016
systematic codon-pair libraries at positions 1–2 and 2–3, yielding

8,127 mutants, and measure their fitness in rich media (Fig-

ure 3A). Within this library, codon choice at one position strongly

affects the codon preferences of a neighboring position, as

measured by codon-pair epistasis (Eab = fab � fafb, where fab
are the fitness measurements of the codon-pair mutant and fa,

fb are the fitness of the single-codon mutants in a best-fit

null model; Figure S6). We investigated whether these strong

epistasis effects could be explained by the local context of

neighboring sequences and by long-range interactions with

other positions on the RNA.

Investigating local context, we found beneficial and delete-

rious sequence motifs that create codon-pair interactions. We

calculated the effect of all 2–5 nt sequences on codon-pair epis-

tasis by correlating the presence of each motif with fitness,

thereby identifying beneficial and deleterious sequence motifs

(Table S3). The most significant motifs contain the frameshifted

start codons ATG and GTG, which were strongly deleterious

(Figures 3B and S7A). Consistent with bioinformatics predictions

(Zur and Tuller, 2013), these measurements provide direct

experimental confirmation of the deleterious consequences

of frameshifted start codons near the beginning of a gene.

In contrast, frameshifted stop codons were often beneficial

(although with smaller effects than for frameshifted start co-

dons), presumably because they help terminate frameshifted

translation (Figure S7B). Although such beneficial and delete-

rious motifs were significantly correlated with fitness (p < 10�18

and p < 10�58, respectively), because of their rare occurrence,

they explain only a small fraction of the total variance in

codon-pair fitness (1.1% and 3.3%, respectively; Table S3).

Identification of Beneficial and Deleterious 50 RNA Base
Pairings
We next investigated longer range interactions and determined

the key structural configurations of the infA RNA that are impor-

tant for fitness. We computationally folded the first 100 nt of the

50 end of the RNA transcript (including the entire 36 nt UTR) for

each of the 8,127 codon-pair mutant alleles, yielding a base-

pairing probability matrix Pij
m for each mutant m, with i and j

representing nucleotide indices. We then asked how the base-

pairing probabilities Pij
m correlate with the fitness fm of these

mutants; calculating the Pearson correlation coefficient Rij =

corr(Pij
m, fm) revealed base pairings that were highly correlated

or anti-correlated with fitness (Figure 4A). The strongest indica-

tors of beneficial fitness were base pairings that form a hairpin

centered upstream of the start codon (near �18 nt; Figure 4B).

To verify the importance of this hairpin structure, we systemati-

cally mutated pairs of positions on the two sides of the presumed

hairpin and measured fitness in rich media. Almost every delete-

rious mutation on either side of the hairpin could be compen-

sated to near WT fitness by mutating the opposite side of the

hairpin to restore base pairing (Figure 4C; only one deleterious

mutant could not be compensated, Figure S8). Together, these

results support the existence of a beneficial hairpin RNA struc-

ture at the 50 end of the gene.

Much of the fitness of the codon-pair mutant library is ex-

plained by the beneficial base-pairing content of each mutant

50 RNA structure. For each mutant m, we calculated the extent

to which its structure contained beneficial and not deleterious
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Figure 4. Correlations between RNA Base Pairing and Fitness Reveal Beneficial and Deleterious RNA Hairpin Structures

(A) Correlation matrix Rij. Each base-pairing location is colored by the correlation between predicted base pair binding probabilities (Pij) and codon-pair mutant

fitness (f); white indicates base pairings that do not form for anymutants, red indicates positive correlation with fitness and blue indicates negative correlationwith

fitness. Insets show examples of base pairings with positive and negative correlations with fitness. The dotted gray box surrounds the approximate location of

beneficial base pairings, while the solid gray box surrounds base pairings near the step loop as shown in (C).

(B) Average of the base-pairing correlations within RNA hairpins (vertical averages of A). The preferred RNA configurations are hairpins centered upstream of the

start of the gene (near position �18 nt).

(C) Analysis of deleterious and compensatorymutationswithin the presumedbeneficial RNAhairpin, showingmutated positions on top of the predictedminimum free

energyRNAstructure of theWTallele.Deleteriousmutations near the step loopof the hairpin canbe compensatedbymutationson the opposite side of the hairpin that

restore base pairing.Gray numbers 1–4 indicate positions of introducedmutations. Circles along the diagonalmark locationswith perfect base pairing, trianglesmark

locations with one mismatch, and a black dot marks the WT 50 UTR sequence. Insets show average fitness for zero to two mismatches. Error bars are 2 SEMs.
base pairings by summing Rij scaled by Pij
m, which we define as

its RNA configuration score (RCS),RCSm =
P100

i = 1

P100
j =1P

m
ij Rij.RCS

was a strong predictor of codon-pair mutant fitness (explaining

21.7% of variance, p < 10�10) and robustly predicted fitness

even when using a small fraction of mutants (�1%) as training

data (Figure S9A).RCS explained fitness better than the presence

of frameshifted start and stop codons (in total 13.2% variance ex-

plained), Shine-Dalgarno-like sequences (12.2%) (Li et al., 2012)

and RNA minimum free energy (12.6%) (Bentele et al., 2013;

Goodman et al., 2013; Gu et al., 2010; Kudla et al., 2009)

(Figure 5), as well as other metrics such as GC content (4.8%)

and ribosome binding site accessibility (15.5%) (Salis et al.,

2009) (STARMethods). Furthermore, because RNA configuration

was largely independent of these other metrics, combining RCS

with multiple properties helped increase the fitness variance ex-

plained (up to 44.8%; Figure 5B). Some of the unexplained vari-

ancemay come from potential fitness contributions at the protein

level because of amino acid changes and also frommeasurement

error. Cross-species comparative genomic analysis using RCS

also showed signal for conservation of this key RNA structural

configuration among closely related infA sequences (Figure S9B).

Constraints on50 RNAStructureDetermineDownstream
Codon Preferences
Wenextaskedwhether the requirement forspecificRNAbasepair-

ings at the 50 end could explain the fitness of codon changes not
only at thebeginningof thegenebutalso fartheraway fromthestart

codon. Focusing on the library of single-codon changes across all

positions of the gene,wequantifiedhowmucheachcodonchange

alters beneficial aspects of the 50 RNA fold: we computationally

folded the50 UTRalongwith themutatedgenesequence (including

20 nt of padding sequence after the mutant codon) and calculated

the predicted effect of the first 100 nt of the 50 structure on fitness

using the base-pairing correlations inferred from the codon-pair

mutants (RCSm =
P100

i = 1

P100
j = 1P

m
ij Rij, using Pij

m of the folded single-

codon mutant RNA and the previously determined Rij from the

codon-pair data).We found that thedifferences inRCSamongsyn-

onymous codons significantly correlated with their synonymous

fitness deviations (whole gene: Pwhole < 10�9; later gene positions

10–71: Plater < 3 3 10�4). Although the correlation coefficients

were small (Rwhole = 0.24, Rlater = 0.12; Figure S5C), they were

much larger than those for intrinsic codon preferences such as

tAI (Rwhole = 0.02 and Rlater = 0.03) and f*syn (Rwhole = �0.01 and

Rlater = 0.03; Figure 6A; more conservatively, fitting f*syn to the syn-

onymous fitness deviations without weighting by the inverse of

measurement uncertainty gives Rwhole = 0.17 and Rlater = 0.13,

though this reflectsoverfittingofmeasurement error).Weobserved

significant correlations between RCS and fitness deviations even

at locations far from the start codon (Figures 6B and S9A). Indeed,

we found that wild-type codon choices throughout most of the

gene, even as far as 66 codons from the start, tended to avoid

long-range disruption of 50 structures with beneficial base pairing
Cell Systems 3, 563–571, December 21, 2016 567



A B

Figure 5. An RNA Configuration Score Ex-

plains Fitness Better Than RNA Folding En-

ergy and Other Metrics

(A) Scatterplot of mutant minimum free energy

(mfe) and RNA configuration score (RCS) for

codon-pair mutants. Each point is colored by

mutant fitness; contour lines are a best-fit

regression; orange circles mark example mutants

with comparable minimum free energy but

bad versus good RCS, with example mutant

RNA structures shown above: a green line sur-

rounds the start codon; each RNA base pair is

colored by the correlation of its base-pairing

probability with fitness as in Figure 4A. The

dashed box surrounds the beneficial hairpin re-

gion mutated in Figure 4C.

(B) Fitness variance explained by frameshifted start

and stop codons, Shine-Dalgarno-like sequences

(SD-like), minimum free energy, RCS, and linear

combinations of these metrics.
(Figure 6C; RCSWT > RCSSynonymous Mutants, p < 73 10�3 for posi-

tions 10–66, p < 0.02 for positions 10–71). In contrast, the fitness

dependenceonRNAminimum free energy reversedbetween early

and later gene regions: weaker RNA structure was beneficial

near the start of the gene, while stronger RNA structure was bene-

ficial in later regions (Figure S10B), consistent with genome-wide

bioinformaticspredictions (Guetal., 2010) andwith50 mutagenesis

libraries (Goodman et al., 2013). These results show that 50 RNA
structural constraints can generate context-dependent codon

preferences that extend far beyond the start of a gene.

Wild-Type Genes Tend to Use Codons that Do Not
Disrupt Their 50 Structures
As suggested by the wild-type codon choices within infA, we

hypothesized that because the native RNA structure near

each gene’s UTR has certain optimal properties (such as

accessibility for the ribosome or protection from nucleases

via hairpin formation, etc.), downstream codon choices should

be biased toward those that do not disrupt these 50 structures.
We tested this hypothesis across all genes of the E. coli

genome. For each wild-type gene sequence, we calculated

the structural similarity of its early RNA (40 nt of 50 UTR +

first 10 codons) when folded alone and when folded with an

additional k subsequent codons, SWT = SijPij
UTR+WT(10) Pij

UTR+-

WT(10+k) (Pij is the RNA base-pairing probability, and i and j sum

over the length of the early RNA). We then contrasted this WT

similarity with the null similarity for alleles where the last 20 po-

sitions were randomized to synonymous codons, Snull = Sij

Pij
UTR+WT(10) Pij

UTR+WT(k-10)+Random(20). Defining DS = SWT � me-

dian(Snull), we observed that E. coli’s wild-type codon choices

are significantly better at maintaining 50 RNA structures than

codon randomized alleles (DS > 0), with the bias toward co-

dons that preserve these structures gradually decaying with

distance from the beginning of the gene (up to 70 codons
568 Cell Systems 3, 563–571, December 21, 2016
downstream; p < 0.01, Figure 6D).

Enrichment for wild-type codons that do

not disturb the native 50 structure de-

creases slightly when controlling for the
free energy of the wild-type allele (Figure S11), suggesting

that this constraint is mediated at least in part by selection

for stronger local RNA structures in later gene regions. These

results show that preservation of native 50 structures in certain

genes can create selective pressure on codon usage even in

distant regions of the RNA.

DISCUSSION

Systematic codon mutagenesis of the E. coli infA demon-

strates that strong context-dependent codon preferences are

created both by short-range sequence motifs and by long-

range RNA structural constraints. In the short range, codons

at the beginning of the gene are chosen to avoid deleterious

sequence motifs such as frameshifted start codons and to

enhance other motifs such as frameshifted stop codons. The

beneficial effects of frameshifted stop codons are likely limited

to sequences near the start codon, as recent work shows that

frameshifted stop codons are generally depleted across cod-

ing regions (Tats et al., 2008). Long-range structural con-

straints also vary depending upon the gene region: consistent

with previous reports (Bentele et al., 2013; Goodman et al.,

2013; Gu et al., 2010; Kudla et al., 2009), weak RNA structure

at the beginning of the gene and stronger structure in later re-

gions is beneficial to fitness. However, in our RCS analysis the

extent to which mutant RNA structures contained beneficial

and not deleterious base pairings predicted the fitness of syn-

onymous mutants both at the beginning of the gene and far

beyond the start codon, augmenting more general predictors

based on RNA folding energy and ribosome binding (Salis

et al., 2009). The use of gene-specific empirical metrics such

as RCS may therefore be useful in cases when general metrics

fail to predict the effects of synonymous changes (Agashe

et al., 2016; Knöppel et al., 2016). These results can also
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Figure 6. Preservation of RNA Structure at the Beginning of the Gene Determines Context-Dependent Codon Preferences throughout

the Gene

(A) Correlation of synonymous fitness deviations with tAI, f *syn, and synonymous RCS deviations, for the full gene and for later regions (positions 10–71).

(B)RCS correlations as in (A), calculated for a sliding window of ten codons centered at each position. The p values show probability of measuring R >Robs based

on a null model of shuffling synonymous codons within amino acids.

(C) RCS for single-codon mutants throughout the gene. Black dots show non-synonymous single-codon mutants, pink dots show synonymous single-codon

mutants, and a red line connects the wild-type codons. Wild-type codons are near optimal with respect to RCS up until codon 66 (dashed line).

(D) Fraction of E. coli genes for which WT codons preserve the 50 UTR configuration better than the median null allele, with 10 codons on either side of the

indicated position being synonymously randomized (for position 10, we use only the WT 50 UTR for the earlier region of the RNA; see STAR Methods). Fractions

greater than 0.5 indicate genome-wide enrichment for WT codons that preserve these upstream RNA structures. Error bars are 2 SEMs.
help to explain biases toward stronger minimum free energy in

later gene regions (Gu et al., 2010), because a stronger local

fold in later regions of the gene is less likely to interact with up-

stream RNA structures. Although infA may be a special case in

that it is essential, highly expressed and relatively small, our

genome-wide analysis of RNA folding patterns highlights

more generally the importance of upstream 50 RNA structures

in constraining codon choices even far away from the start of

the gene. The existence of preferred RNA structures could

be expected as differential accessibility for the ribosome and

RNA nucleases can dramatically affect rates of translation initi-

ation (Knöppel et al., 2016; Salis et al., 2009) and RNA degra-

dation (Bo€el et al., 2016; Deana and Belasco, 2005; Presnyak

et al., 2015). However, it will be important to profile large

numbers of synonymous changes in other genes to determine

how key RNA base pairings affect gene expression and fitness,

and it will be interesting to compare such predicted base pair-

ings to RNA structures measured in vivo (Del Campo et al.,

2015). Our cross-species analysis of beneficial RNA structures

among closely related infA alleles suggests that beneficial

base pairings could also be identified using evolutionary con-

servation. Combining cross-species comparison with RNA

structural analysis may therefore help predict the effect of syn-

onymous mutations and refine evolutionary metrics for evalu-

ating selection, such as dN/dS. Although our experimental re-

sults and analysis are specific to E. coli, it will be interesting to

study how they extend to other bacteria and possibly to eu-

karyotic organisms, where it has also been shown that optimal

codons can stabilize RNA folding (Gu et al., 2010; Katz and

Burge, 2003) and avoid sequence motifs such as frameshifted

start codons (Zur and Tuller, 2013). We expect that further

application of these methods will help guide synthetic gene

design, reveal evolutionarily important synonymous substitu-

tions, and explain the forces that shape codon usage across

species.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

LB Lennox RPI L24065

MOPS Minimal media Teknova M2106

MOPS EZ Rich Defined media Teknova M2105

Deposited Data

Sequencing FASTQ reads for Single Codon, Codon-pair,

50 UTR hp mutant

ArrayExpress https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-4020/

Fitness data for the infA single-codon This Study Data S1

Fitness data for the infA Codon-pair This Study Data S2

Fitness data for the infA 50 UTR hp mutant This Study Data S3

Data on genome-wide RNA similarity scores in E. coli This Study Data S4

Experimental Models: Organisms/Strains

EcNR2, E. coli: strain MG1655, mutS-, l-Red+ Wang et al., 2009 https://www.addgene.org/26931/

Sequence-Based Reagents

illustra bacteria genomicPrep Mini Spin Kit GE Healthcare Life Sciences 28-9042-58

Q5 Hot-Start High-Fidelity 2X Master Mix NEB M0494S

Quant-iT DNA assay kit Life Tech Q-33120

MinElute PCR Purification Kit QIAGEN 28004

KAPA Library Quantification Kit for NGS, Illumina platform KAPA Biosystems KK4824

Software and Algorithms

SeqPrep John St. John https://github.com/jstjohn/SeqPrep

RBS Calculator Salis et al., 2009 https://github.com/hsalis/

Ribosome-Binding-Site-Calculator-v1.0

NUPACK Zadeh et al., 2011 http://www.nupack.org

free2bind Starmer et al., 2006 https://sourceforge.net/projects/free2bind/

Other

Turbidostat for growth competition assay Toprak et al., 2013 N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to Lead Contact Roy Kishony at the Technion - Israel Institute of

Technology (rkishony@technion.ac.il).

METHOD DETAILS

Generating mutant libraries with MAGE
For the single-codon mutant libraries, we synthesized single-stranded 90nt oligonucleotides (IDT) with homology to the E. coli chro-

mosome and with 3 consecutive degenerate N’s in the center of each oligo (Table S1). We handmixed with equal ratios of A, C, T and

G to ensure equal representation of all codons.We combined oligonucleotides targeting 9 consecutive codons into 8MAGE pools for

multiplex transformation, with 10 consecutive codons for the last pool. For each MAGE pool, we performed 4 consecutive cycles of

MAGEwith oligo concentration of 10 mM,with recovery cultures in 3mL LB Lennox (RPI L24065) with Chloramphenicol at 30�C. These
4 cycles led to a final transformation efficiency of the mutant library of about 50%, with the remainder being the original wild-type

sequence. We did all 4 cycles serially with the shortest possible recovery times (3-5 hr) to minimize loss of deleterious mutants

from the population.

For the codon-pair libraries, we pooled oligos containing 6 degenerate N nucleotides at the center of the oligo, covering positions

1-2 and 3-4. We combined these with a pool of the three single-codon oligos for positions 1-3 (80% codon-pair oligos, 20% single-

codon oligos).
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For the 50 UTR hairpin libraries experiment, we designed oligos with 2 degenerate N’s on opposite sides of the hairpin stem, oligo

#1 covering positions (�22, �21) and (�16, �15), oligo #2 covering positions (�23, �22) and (�15, �14), and oligo #3 covering

positions (�24, �23) and (�14, �13). Positions are relative to the ATG start codon (A at position 0).

Preparing mutant populations for selection
Selection was conducted in either MOPSMinimal or MOPS EZ Rich Definedmedia (Teknova M2106, M2105). Starter populations for

selection were prepared immediately after the last MAGE cycle to minimize loss of deleterious mutants. We used 2.5mL of the 3mL

culture to inoculate the selection. After regrowth to an optical density of about 0.5 (l = 600nm), the selection inoculum was spun at

10,000g for 1min, washed twice with 1mLminimal media, and resuspended in 1.5mL of minimalmedia. The 1.5mL resuspension was

split in two vials of 0.75mL, one for selection in minimal media and the other for selection in rich media. Two consecutive MAGE pools

were combined to form one selection pool with 18-19 consecutive codon positions competing in the same culture; this minimized the

number of selection cultures while fitting within the sequencing read length on the Illumina platform. Each selection pool was placed

in a flat-bottom glass vial (Chemglass, CG-4902-08) with open-top screw caps (Chemglass, CV-3750-0024) and mini magnetic stir-

bars (Big Science Inc., SBM2003MIC), brought to 12mL with the selection media, covered with AeraSeal (EXCEL) and grown at 30�C
with continuous stirring.

For the codon-pair library, we measured 5 samples during 10 doublings in rich media. For the 50 UTR hairpin library, we did 2 in-

dependent biological replicas of the MAGE transformations followed by growth in rich media taking 10 samples, sampling once per

doubling.

Sampling populations during selection
Optical density (OD) was continuously monitored using an IR LED and photodiode (Toprak et al., 2013), calibrated against cultures

measured on a spectrophotometer (l = 600nm). 6mL of each population was sampled in 15mL Falcon tubes when the average OD of

vials of the same media went above 0.3. Vials were replenished with 6mL of pre-warmed media, with slight adjustments in volume to

keep the OD uniform across vials. Sample cultures were placed immediately on ice, then pelleted at 10,000g for 10min at 4�C. After
discarding the supernatant, pellets were resuspended in 1mL phosphate buffered saline (1x PBS) and transferred to 1.5mL Eppen-

dorf tubes, pelleted at 10,000g for 1min (discarding the supernatant) and then frozen at �80�C.

Preparing population samples for measuring mutant frequencies via sequencing
Genomic DNA was extracted from pelleted samples using the Illustra Bacteria Genomic Prep Mini Spin Kit (GE) eluting in 30 mL. Illu-

mina adapters and sequencing barcodeswere attached via two rounds of PCR.We used a pool of forward and reverse primers with a

varying number of internal N sequences to improve clustering and read diversity (Table S1). We did two independent PCR replicas for

each library DNA sample and for independent PCR replicas of DNA from a single colony of theWT. For PCR1, 2 mL DNA template was

added to 10 mL Q5 Hot-Start High-Fidelity 2X Master Mix (NEB), 1 mL of 10 mM forward primer mix, 1 mL of 10 mM reverse primer mix

and 6 mL PCR grade water, with program: 30sec at 98�C, 20 cycles of (10sec at 98�C, 15sec at 67�C, 15sec at 72�C), and 2min at

72�C. PCR1 products were then diluted 1:10 in PCR grade water. Each PCR2 reverse primer had a unique 8nt barcode sequence that

allowed us to demultiplex samples from the same sequencing reaction (Table S1). For PCR2, 2 mL of diluted PCR1 product was

added to 10 mL Q5 Master Mix, 1 mL forward primer, 1uL reverse primer with appropriate barcode (for sample time and pool) and

6 mL PCR grade water, with program: 30sec at 98�C, 10 cycles of (10sec at 98�C, 30sec at 72�C), and 2min at 72�C. We checked

each PCR product for a clean band on an agarose gel, measured DNA concentrations using the Quant-iT DNA assay kit (Life

Tech, Q-33120) kit, added a small amount of water to each sample to normalize their concentrations, then pooled all samples

and cleaned-up using QIAGEN MinElute PCR Purification Kit. Final library DNA concentrations were quantified via qPCR with

KAPA Library Quantification Kit (KAPA Biosystems) and sequenced with overlapping 100bp paired end reads on the Illumina HiSeq

platform.

Analysis of mutant frequencies
Every position within the mutant library was covered by overlapping paired-end reads, enabling highly accurate measurements of

mutant frequencies. SeqPrep (github.com/jstjohn/SeqPrep) was used to merge each pair of reads into a consensus sequence.

We used a combination of Python and Perl scripts to trim reads to the library region, remove any reads with degenerate sequences

or low quality scores (< Q20), and to count the number of times we saw each allele. We removed reads that contained multiple mu-

tations outside of the target single-codon or codon-pair libraries. We obtained an accurate measurement of errors originating from

the WT allele by sequencing a library prepared using WT genomic DNA at high coverage. Miscalled bases occurred on average for

less than 1 in 104 reads per position per base (Figure S1A). Miscalled mutant counts were generally very small for sequences that

weremore than one SNP different from theWT allele. Mutant counts were highly reproducible across independent PCR replicas (Fig-

ure S1B), enabling us to subtract the expected number of counts that were coming from sequencing miscalls of the WT allele (Fig-

ure S1C) to obtain corrected counts for each allele. We divided corrected counts for each allele by the number of WT counts to obtain

relative mutant frequencies (Figures S1E–S1G).

We used two independent PCR replicas for each library to assess errors introduced by sequencing and to remove outliers coming

from PCR amplification. Comparing the frequencies of each mutant across replicas, we determined that measurement errors were

just slightly above what would be expected from counting noise (Figure S1D).
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Measurement of mutant fitness
We calculated relative mutant growth rates g, by finding the best linear fit to the logarithm of rate of change in mutant frequencies

relative to the WT allele over time. We normalized this by d, the expected dilution rate in the culture due to growth of the WT. The

codon-pair libraries and UTR hairpin experiments were done on different days and therefore under slightly different experimental

conditions, and we observed slower growth than for the single mutant libraries during the initial periods of selection. Therefore for

these datasets we set d so that the stop codon null mutants had an average fitness of 0.

For the UTR hairpin libraries we measured fitness for each replica separately (Figure S2E). Fitness values were normalized by the

rate of dilution for null mutants (stop codons at position 1) and averaged across replicas.

Since we measure all mutant frequencies relative to the WT allele, our fitness values represent fitness relative to WT. As the WT

allele will have 2 offspring after a single generation, the Malthusian fitness of a mutant with fitness f is therefore 2f/2.

Comparing allele frequencies between media identified positions where amplification of residual MAGE oligos sometimes

prevented accurate measurements of allele frequencies for the single-codon libraries (as determined by differences in

barcode frequencies or by comparing total number of reads for each mutant at each position). Such oligo amplification

only occurred for positions near the center of sequencing pools, where MAGE oligos bridged the sequencing PCR primers.

Altogether these events occurred at only a few time points and positions and usually affected only a single barcode

(less than 2% of mutants in rich media and less than 0.3% of mutants in minimal media had issues with both barcodes, Fig-

ures S1E and S1F). We removed these time points from the growth fits at any positions where they occurred, which enabled

fitness measurements of all mutants in both media except at positions 43-44 in rich media. We prevented further oligo ampli-

fication for the codon-pair libraries by increasing the number of washes following sampling from the selection culture

(Figure S1G).

Comparing mutant fitness measured using MAGE-seq to site-directed mutagenesis studies
Previous works have measured the growth rates of a few infA mutants using plasmid-based expressions systems or site-directed

mutagenesis and allele replacement (Croitoru et al., 2004). While these studies did not create synonymous variants, comparison

of our measured growth rates with single amino acid infA mutants shows good agreement: comparing in rich media at 30�C we

observed Pearson correlation coefficient of R = 0.92 (p < 10�4.7), while in minimal media at 30�C we observed R = 0.76 (p <

10�2.4) (Figure S2D). Note that we used MOPS rich andminimal medias while Croituro et. al used LB for rich media and an alternative

glucose limited minimal media (Senn et al., 1994).

Analysis of amino acid changes on protein function
Fitness values were similar between rich and minimal media, though mutations were slightly less deleterious in minimal media

(Figure S2). For faa, we used the average mutant fitness between minimal and rich media (using only minimal media fitness

for positions 43-44 due to greater uncertainty for rich media in these positions). We applied Principal Component Analysis

(PCA) to faa after removing start, stop and nonsense codons and centering the columns by their mean. The resulting principal

components (PCs) are vectors of length 20 describing the key patterns of how fitness depends on amino acid choice. The first

four PCs explain 88% of the covariance in the matrix. We find that these PCs correlate strongly with distinct biochemical prop-

erties from a database of amino acid indices (Kawashima et al., 2008): PC1 with buried residues and hydrophobicity, PC2 with

flexibility (propensity for chain reversal), PC3 with size (steric hindrance) and PC4 with net charge (Table S2). For structural anal-

ysis and for identifying positions where IF1 interacts with the ribosomal RNA, the infA sequence was aligned to the IF1

sequence of Thermo thermophilus (Carter et al., 2001) (single insertion between residues 3-4 of infA and a single deletion at

residue 70).

Calculation of intrinsic codon preferences
We averaged synonymous fitness deviations (fsyn) across positions 10-71, weighting the value at each position by the inverse of

standard deviation squared, with standard deviations based on uncertainty of the slope in the linear fits (Figure S5). This use of

the weighted average reduces the contribution of positions with low fitness, such as deleterious amino acid substitutions, where

measurement error is higher.

Codon-pair motif analysis
Themultiplicative pairwise null model was created by assigning fitness values fa and fb between 0 and 1 to each codon in the pair and

calculating the fitness of codon-pairs as fab = fafb. We optimized the fitness values for each of the 256 individual codon values (64

codons3 2 codons in each pair3 2 codon-pairs) byminimizing the sumof the residuals squaredwhen the null model was subtracted

from the actual fitness values. Mutants with f<0were set to f = 0. We created all possible 6nt motifs matching 2-5 nucleotides across

the codon-pair. Codon-pair interactions were analyzed by finding the deviations in mutant fitness from the expected fitness of the

codon-pair based on the multiplicative null model. We tested for correlations between this fitness deviation and the presence or

absence of each motif. Many of the most deleterious motifs are created by the frameshifted start codons ATG and GTG. Table S2

shows all motifs with significant p values after adjusting for multiple hypothesis testing using the Bonferroni correction (MN different

hypotheses, where MN is the number of possible motifs with N nucleotides).
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RNA structure analysis
RNA Configuration Score (RCS) was more predictive of fitness than RNA minimum folding energy and other RNA metrics. When

compared to RNA folding energy as measured by minimum free energy, RCS explained a greater amount of variance (21.7% for

RCS versus 12.6% for minimum free energy, both with p < 10�10). RCS also exceeds predictions based on RBS accessibility (Salis

et al., 2009) (15.5%, p < 10�10; Methods), although correlation between these metrics (R = 0.295, p < 10�10) suggests that the bene-

ficial RNA structures impact fitness by at least in part by modulating rates of translation initiation. Other RNA features contributed to

fitness but to a smaller extent: for example, greater affinity of Shine-Dalgarno-like mutant sequences for the ribosome’s anti-Shine-

Dalgarno site (which leads to ribosomal stalling (Li et al., 2012)) explained 12.2% of variance (p < 10�10), while the intrinsic property of

GC content explained only 4.8% of variance (p < 10�10). Combining multiple metrics, we found that RCS was largely orthogonal to

effects of minimum free energy: combining RCS and minimum free energy in a linear model explained 30.9% of fitness variance (p <

10�10), while including these two metrics with the effects of Shine-Dalgarno-like sites and all frameshifted start and stop codons ex-

plained 44.8% (p < 10�10), highlighting how context-dependent codon preferences are simultaneously affected by multiple RNA

properties.

RNA structures and RNAminimum folding energies were calculated using the NUPACK (Zadeh et al., 2011) ‘pairs’ and ‘mfe’ func-

tions, with settings: Temperature = 30, material = ‘rna’, dangles = ‘all’, and with a 0.001 cutoff for outputting probabilities of base-

pairing. RBS scores were calculated using the RBS calculator (Salis et al., 2009), modified to run at temperature = 30. All codon-

pair calculations use the first 100nt of the infA RNA (from the primary promoter P2(Giangrossi et al., 2007), which yields an mRNA

with 36nt in the 50 UTR). While calculations with RNAs that extended further downstream yielded similar results, RNA secondary

structural configuration explained more fitness variance in codon-pair mutants with shorter mRNA’s (100nt) than when using the

entire mRNA including the 30 UTR (319nt). Minimum-free-energy structures in Figure 6A were created using the NUPACK online

GUI (http://www.nupack.org), and modified to color basepairs by their fitness correlation scores. Affinity of codon-pair mutants

for the anti-Shine-Dalgarno site were calculated using free2bind (Starmer et al., 2006) with the first 15 nt of each mutant gene

(including the start codon) and the anti-Shine-Dalgarno probe sequence 30CCUCCU50, with Temperature = 30.

Combining different metrics to explain the fitness of the codon-pair mutants
Fitness correlations were calculated for all codon-pair mutants excluding mutants containing stop codons. We combined different

metrics using a linear model. For metrics {X1, X2 . Xn}, we solve for the coefficients {a0, a1, a2 . an} that minimize the root mean

square distance betweenM= a0 + a1X1 + a2X2 +. + anXn andmutant fitness values f, then calculate the Pearson correlation between

M and f. For the frameshifted start codons we allow coefficients for each start codon to be chosen independently:M = a0 + a1XATG +

a2XTTG + a3XGTG, and similarly for frameshifted stop codons.

Correlating codon preferences and RNA Configuration Score throughout the gene
We calculated theRCS of single-codonmutants by folding the RNA from the transcription start site until 20nt after themutated codon

using the same settings as for the codon-pair library. The Rijmatrix was calculated only using the codon-pair data. We calculated the

RCS score based on the RNA configuration of single codonmutants within the first 100nt of the folded RNA (subset of Pij
mmatrix with

1% i,j% 100). We calculated synonymous fitness deviations (fsyn) and synonymous RCS deviations (RCSsyn) by subtracting out the

average affect of each amino acid at each position. We tested for correlations between the synonymous deviation matrices since this

avoids the potential for false positive or negative correlations due to amino acid effects (as the first two nucleotides of each codon are

also correlated with amino acid properties) From all calculations we removed amino acids with only one codon (methionine and tryp-

tophan) since synonymous deviations are zero by default, and we excluded stop codons and all codons for which faa < 0.25 (< 7% of

mutants), since uncertainty in fitness measurements is highest for highly deleterious amino acids. For Figure 6B and Figure S10 we

used single codon fitness measurements from rich media since the codon-pair fitness values used for calculating Rij were also

measured in rich media.

We calculated Pearson correlation coefficients and associated p values when correlating RCSsyn values and fsyn values, using a

slidingwindow of 10 codons centered at each codon position. Codonswithin the first half of the genemake the strongest contribution

to these correlations (positions 1-9: R = 0.33, p < 5*10�8, positions 26-35: R = 0.16, p < 6*10�5), although correlations are still sig-

nificant at later positions (positions 51-60: R = 0.12, p < 0.015) (Figure S10). We calculated p values using a null model with random

shuffling of synonymous codons within amino acids (103 trials), with p values based on the number of random shufflings with either

higher or lower correlation coefficients than those of the actual RCS, or using the cumulative probability distributions with mean and

variance given by the null model when there were 0 trials with higher/lower correlations than for RCS. We calculated the local effects

of RNA minimum free energy by computing the folding energies of RNAs containing the mutant codon and 20nt of upstream and

downstream sequence (43nt in total). Local RNA folding energy was positively correlated with synonymous codon preferences

only at the beginning of the gene (positions 1-9: R = 0.33, p < 5*10�7) and was negatively correlated with fitness in later regions (po-

sitions 10-71, R =�0.051, p < 0.006; Figure S10B,Methods). These correlations with local minimum free energymatch genome-wide

trends toward reduced RNA folding at the beginning of genes and toward stronger folding in later regions (Gu et al., 2010).

Testing the optimality of wild-type codons for forming beneficial RNA structures
To identify whether WT codon choices within infA were optimized for forming specific RNA structures, we tested whether wild-

type codons in later regions of the gene had significantly better RCS than other single-codon mutants: we calculated the average
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difference between wild-type codon RCS and average mutant RCS for a given number of positions, and then calculated a Z-score

and p value for this difference (by comparing the actual value to a distribution of scores obtained by randomly shuffling synonymous

codons within amino acids at each position, 105 random trials). We found that WT codons had near optimal RCS values compared to

all possible single-codonmutants, up until codon 66.We tested for significancewhen all single-codonmutants were allowed (all), and

also when only synonymous codons for thewild-type amino acid were included in the average (syn). Including codon positions 10-66:

Pall = 4.5*10�5, Psyn = 0.0063; for the entire gene (positions 1-71): Pall = 1.6*10�4, Psyn = 0.018.

Evolutionary conservation of optimal RNA structures
9,824 IF1 ortholog alignments from the infA protein sequence of E. coli were generated via HHblits (Remmert et al., 2011) using

e-value sensitivity of E = 10�2. We retrieved the gene sequence for each protein ortholog and took 36nt from the 50 UTR and the first

64nt of the gene, yielding 3821 unique sequences. We calculated RCS for each sequence and for infA alleles with random nucleotide

substitutions on the WT E. coli sequence (maintaining average nucleotide content). RCS of closely related infA orthologs was higher

than for randomly mutated sequences, indicating conservation of this RNA configuration (Figure S9).

Genome-wide enrichment for codons that preserve 50 RNA configuration
For each gene in the E. coli genome K-12MG1655(Riley et al., 2006), we folded RNA from the beginning of the gene alone and stored

the probabilities of any two positions within the RNA being base-paired (base-pairing matrix Pij
early). For the early region of the gene,

we use 40nt from the 50 UTR, the start codon and the next 10 codons from the WT sequence (Pij
early = Pij

UTR+WT(10)), except when

testing for optimality of the first 20 codons (Figure 6D, position 10) in which case we use only 40nt from the 50 UTR and the start codon

(Pij
early = Pij

UTR+WT(0)). We then calculated the binding probability matrix when the same RNA was folded together with the addition

of k downstream codons (either all WT codons or randomly choosing synonymous codons in the final 20 positions: matrices

Pij
UTR+WT(k+10) and Pij

UTR+WT(k-10)+Random(20)). For the null allele the final 20 codons were randomly chosen according to their genomic

frequencies. Positions in Figure 6D and Figure S11 indicate the middle of the synonymously randomized region. We calculated the

extent to which bindings near the beginning of the gene were disrupted when adding additional sequences using the similarity met-

rics SWT =SijPij
UTR+WT(10) Pij

UTR+WT(10+k), and Snull =Sij Pij
UTR+WT(10) Pij

UTR+WT(k-10)+Random(20)where i and j sum over all of the base-pair-

ing probabilities of the early RNA. To test whether WT codon choices are optimized to prevent disruption of 50 structures, we

compared SWT to median(Snull). Thus, genes for which DS = SWT - median(Snull) > 0 are enriched for codons that preserve the

RNA configuration of 50 RNA structures near the beginning of the gene. For each gene, we calculated the median(Snull) from 300

random trials at each position. For RNA folding we used ViennaRNA (Lorenz et al., 2011). Error bars in Figure 6D and Figure S11

are calculated based on the standard error of the binomial distribution. We did not detect significant correlation (p < 0.05) between

DS and gene expression data (Ishihama et al., 2008).

Tips for high quality MAGE-seq experiments
MAGE-seq enables systematic mutagenesis of functional elements anywhere on the E. coli genome. Themethod comprises 3 steps:

1) Generation of mutant library via MAGE (Wang and Church, 2011; Wang et al., 2009).

2) Selection on the mutant population with a functional assay: diverse functional assays are applicable (growth, FACS, etc.) so

long as the assay differentially alters the frequencies of functional and non-functional mutants within the population.

3) Deep-sequencing mutated regions before and after selection: converting mutant counts into mutant frequencies relative to the

WT allele, and finally calculation of mutant fitness by analyzing the change in mutant frequencies due to the assay.

As in standard MAGE transformations, MAGE oligos should be approximately 90nt with mutations surround by flanking homolo-

gous sequences targeting the lagging strand of the genome. Oligonucleotides libraries can be combined into a single pooled reaction

as long as the mutated positions are within about 30nt of each other, which is necessary to avoid introducing multiple mutations. In

this way, transformation with a second MAGE oligo will restore a pre-existing mutation back to the WT sequence. For measuring

fitness landscapes across genes or regions longer than 30nt, split the target region into multiple MAGE pool regions of approximately

30nt or less in length. MAGE transformations typically achieve efficiency of around 20% without selection. In order to decrease the

WT fraction of the population (and enable greater sequencing depth of the mutant library), we do 4 MAGE transformations serially

(with the minimum required recovery time between transformations), after which WT abundances drops to about 50% of the popu-

lation. This process typically takes around 24 hr. When mutations affect growth rates, we recommend beginning the competition

experiment immediately after library generation, so that depletion of null mutants in the population can be directly observed by

sequencing.

Thorough washing of the pellet is especially critical after the final MAGE transformation (2 washes in freshmedia recommended) as

it removes residual oligonucleotides from the culture that could be amplified during amplicon sequence of the genome, creating high

background that prevents accurate measurement of mutant frequencies via sequencing. Although the oligos for our single codon

mutant library scanned along across all positions with constant length homology regions on both sides of the mutant codon, through

later experiments we determined that best practice is to hold constant the 30nt flanking sequences on either side (L and R) of the

MAGE region, and scan the degenerate sequences (N) along within the middle of the 30nt MAGE region (for example LN-----R,

L-N----R,., L----N-R, L-----NR, etc.). In this way all MAGE oligos will have at least 30nt of homology outside of any other mutation,
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while noMAGE oligo will bridge the PCR1 primers. In any case we recommend ordering MAGE oligos and PCR1 primers on separate

plates or in separate tubes, to minimize the potential for accidental cross contamination.

MultipleMAGEpools can be combined during selection or during sequencing, provided that the entire library region of every pool is

covered by paired end overlapping reads. For example, when sequencing with 100bp paired-end Illumina reads, two adjacent 30nt

MAGE pools may be combined into one 60nt sequencing pool prior to competition experiments, reducing the number of samples.

Overlapping paired-end reads are beneficial as this reduces the frequencies of sequencing errors. For any MAGE pool being

sequenced, we also recommend sequencing an amplicon of the WT allele, as this allele is most abundant in the population following

transformation and is therefore the greatest source of sequencing errors. Sequencing errors coming from this WT control are highly

reproducible on the Illumina platform, which enables subtraction of the expected counts due toWT sequencing error from anymutant

population. This is especially helpful for obtaining accurate fitness measurements for deleterious alleles that differ from the WT allele

by only 1 nt. Independent sample prep starting with PCR1 and separate barcoding in PCR2 is helpful for identifying sources of error

during PCR and sequencing. Biological replicas starting from before the initial MAGE transformation are also helpful as fitness

accuracy can be increased by averaging independent fitness measurements across replicas.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis as reported in the results and figure legends were calculated with custom scripts written in MATLAB. R-values

indicate Pearson correlation coefficients.

DATA AND SOFTWARE AVAILABILITY

Software
MATLAB code for E. coli genome analysis is available upon request.

Data Resources
Fitness data for the infA single-codon, codon-pair and UTR mutants available as supplemental data files Data S1, Data S2, and

Data S3.

Data on genome-wide RNA similarity scores in E. coli available as supplemental data file Data S4.

The accession number for the raw FASTQ files reported in this paper is ArrayExpress: E-MTAB-4020.
Cell Systems 3, 563–571.e1–e6, December 21, 2016 e6


	RNA Structural Determinants of Optimal Codons Revealed by MAGE-Seq
	Introduction
	Results
	Comprehensive Single-Codon Mutagenesis of infA Using Multiplex Automated Genome Engineering Sequencing
	Analysis of Single-Codon Mutant Fitness
	Systematic Codon-Pair Mutagenesis Reveals Beneficial and Deleterious Sequence Motifs
	Identification of Beneficial and Deleterious 5′ RNA Base Pairings
	Constraints on 5′ RNA Structure Determine Downstream Codon Preferences
	Wild-Type Genes Tend to Use Codons that Do Not Disrupt Their 5′ Structures

	Discussion
	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Method Details
	Generating mutant libraries with MAGE
	Preparing mutant populations for selection
	Sampling populations during selection
	Preparing population samples for measuring mutant frequencies via sequencing
	Analysis of mutant frequencies
	Measurement of mutant fitness
	Comparing mutant fitness measured using MAGE-seq to site-directed mutagenesis studies
	Analysis of amino acid changes on protein function
	Calculation of intrinsic codon preferences
	Codon-pair motif analysis
	RNA structure analysis
	Combining different metrics to explain the fitness of the codon-pair mutants
	Correlating codon preferences and RNA Configuration Score throughout the gene
	Testing the optimality of wild-type codons for forming beneficial RNA structures
	Evolutionary conservation of optimal RNA structures
	Genome-wide enrichment for codons that preserve 5′ RNA configuration
	Tips for high quality MAGE-seq experiments

	Quantification and Statistical Analysis
	Data and Software Availability
	Software
	Data Resources




