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High-order species interactions shape
ecosystem diversity
Eyal Bairey1, Eric D. Kelsic2,w & Roy Kishony2,3

Classical theory shows that large communities are destabilized by random interactions

among species pairs, creating an upper bound on ecosystem diversity. However, species

interactions often occur in high-order combinations, whereby the interaction between two

species is modulated by one or more other species. Here, by simulating the dynamics of

communities with random interactions, we find that the classical relationship between

diversity and stability is inverted for high-order interactions. More specifically, while a

community becomes more sensitive to pairwise interactions as its number of species

increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity

to four-way interactions actually decreases. Therefore, while pairwise interactions lead to

sensitivity to the addition of species, four-way interactions lead to sensitivity to species

removal, and their combination creates both a lower and an upper bound on the number of

species. These findings highlight the importance of high-order species interactions in

determining the diversity of natural ecosystems.
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A
major challenge of theoretical ecology is explaining the
stable coexistence of multi-species communities1–5.
While species interactions are important for maintaining

natural diversity1,6–12, their random nature destabilizes large
communities. Even a community that satisfies the exclusion
principle13, or is otherwise inherently stabilized6, can have its
stability jeopardized by random interactions among species11.
This challenge was embodied in the seminal work by May14,
showing that the number of species that can stably coexist in
randomly interacting communities is inversely proportional to
the strength of their effective pairwise interactions15. In
ecological communities with strictly random pairwise
interactions, this result predicts an upper threshold on
diversity, as observed in random pairwise interaction
models16,17. Constrained properties of interactions, such as
trophic level18,19, intervality, broad degree distributions20,
positive and negative reciprocity21–23, distribution skewness24,25

and connectance between differentially self-regulating species26

have been suggested as ways to explain the coexistence of large
communities. Less is known about the feasibility, and possibly
even the necessity, of diversity within the strict context of
unconstrained random interactions.

Species can exhibit interactions that inherently involve multiple
species27. While modelling in ecology often assumes species
communities with pairwise interactions (Fig. 1a), species can also
interact in higher-order combinations, that is, the interactions
between two species can be modulated by other species27–30.
For instance, while a microbial species can produce an antibiotic
that inhibits the growth of a competing species, this pairwise
inhibitory effect can be attenuated by a third species that
produces an enzyme that degrades the antibiotic31–33. This
third species thus modifies the interaction between the
antibiotic-producing and sensitive species, without having a
direct effect on any of them in isolation (Fig. 1b). The expression
or activity of the antibiotic-degrading enzyme may in turn be
inhibited by compounds produced by a fourth species34, thereby
generating a four-way interaction (Fig. 1c). Another general class
of high-order interactions may arise when species exhibit
adaptive behaviour30,35, such as a predator switching its prey
when a more preferred prey becomes available36, or a prey that
reacts to the presence of a predator by decreasing its foraging
activity directed at a third species37. Such behavioural effects can
quickly lead to interactions at even higher order; for example, the
third species may subsequently increase its activity against a

fourth species, generating an effect that is inherently
four-way28,38. While the paradigm of pairwise interactions
can capture the density-mediated effect of a predator on a
species devoured by its prey that arises from the predator’s impact
on the prey’s density, it misses the often larger trait-mediated
effect28,37,39 of the predator on this third species through its
impact on the prey’s behaviour.

While the importance of high-order interactions has been
recognized, their general impact on critical community size has not
been studied. One class of three-way interactions, whereby one
species attenuates the negative interactions between two others,
can stabilize well-mixed communities in specific network config-
urations31. Three-way interactions have further been shown to
promote diversity in patchy environments by increasing sensitivity
to initial conditions40. While increasing the order of interactions
weakens their destabilizing effect41 and can increase the variance of
species abundances at stationary states42, it is unclear how high-
order interactions affect the critical threshold on community
size28,43, and whether the classical result that random interactions
impose a cap on community diversity still applies.

Here, we combine simulations and theoretical analysis of random
communities to examine the relation between diversity and stability
in ecosystems with both pairwise and higher-order interactions. We
find that high-order interactions impose a lower bound on the
number of species, in addition to the upper bound imposed by
pairwise interactions. Altogether, interactions of different orders
therefore define an optimally stable range of diversities.

Results
Modelling communities with pairwise and high-order inter-
actions. We use a replicator dynamics model16,23,44,45 to simulate
communities with interactions of different orders41,42,46. Our
model assumes N species with abundances xi, and whose
per-capita growth rates _xi=xi are determined by the sum of
pairwise interactions Aijxj (where Aij determines the effect of species
j on species i), of three-way interactions Bijkxjxk (where species j
and k have a joint effect on species i) and so on. This model
therefore represents the Taylor expansion of a general system that
includes trait-mediated effects as well as pairwise interactions:

_xi
xi
¼ f i ~xð Þ�

X
xjf j ~xð Þ;

f i ~xð Þ ¼ � xi þ
XN
j¼1

Aijxj þ
XN
j¼1

XN
k¼1

Bijkxjxk þ

XN
j¼1

XN
k¼1

XN
l¼1

Cijklxjxkxl þ . . .

ð1Þ

The model assumes random interactions perturbing an inherently
stable community. The stability is provided by the first term (� xi),
which reflects the assumption that species are self-limiting in high
concentrations. The pairwise interactions matrix is given by
A ¼

ffiffiffi
a

p
~A, where ~A is a random matrix whose elements are

drawn from a Gaussian distribution with mean 0 and variance 1,
and a determines the strength (variance) of the pairwise
interactions. The three-way interactions are set by the tensor
B ¼

ffiffiffi
b

p
~B, where ~B is a random three-dimensional (N�N�N)

tensor whose elements are drawn from a Gaussian distribution with
mean 0 and variance 1, and b represents the strength of three-way
interactions; and similarly with four-way interactions whose
strength scales with a parameter g. As the total biomass is often
determined by external resources, such as nutrients, energy and
space, we keep the sum of all species abundances constant by
subtracting from the individual growth rate of each species the
average growth rate of the species in the community.

Pairwise interactions 3-way interactions 4-way interactions

1 2

43

1 2

43

1 2
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Figure 1 | Species can exhibit high-order interactions, whereby the

interaction between two species is affected by other species. (a) Pairwise

interactions in a community: species affect each other directly. For instance:

species ‘1’ could be producing an antibiotic, inhibiting the growth of species

‘2’. (b) Three-way interactions in a community: one species can modulate

the interactions between two others. For instance, species ‘3’ might degrade

the antibiotics produced by species ‘1’, thereby attenuating the inhibitory

effect of species ‘1’ on species ‘2’. (c) Four-way interactions in a community.

For example, species ‘4’ might produce a compound that inhibits the

antibiotic-degrading enzyme produced by species ‘3’.
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High-order interactions set a lower bound on diversity.
As expected from the analysis by May14 and subsequent
results16,17, without high-order interactions we find that
coexistence is lost when the pairwise interaction strength a is
increased beyond a critical threshold that decreases with the
number of species. We ran simulations with strictly pairwise
interactions (a40 with b¼ 0, g¼ 0) for varying interaction
strengths a and different numbers of species N. When the
pairwise interaction strength a is small the simulations reach a
steady state where all species coexist (Supplementary Fig. 1a),
but when a increases simulations start exhibiting species
extinctions (Supplementary Fig. 1b). Therefore, for each
number of species N, we can define a critical threshold ac as
the strength of pairwise interactions at which community
feasibility (positive abundance for all species at equilibrium24)
is lost for a given fraction of the simulations (5%, Supplementary
Fig. 1c,d). When the number of species N is increased, the critical
threshold ac decreases as 1/N, in accordance with the result
by May14 (Fig. 2a). Thus, as communities become more
diverse they are more sensitive to random pairwise interactions
(Fig. 2b).

Strikingly, this classic relation between diversity and stability is
inverted when high-order interactions are considered. We
repeated the analysis above with strictly three-way interactions
(only b40) and strictly four-way interactions (only g40).
Similar to the case of pairwise interactions, when the interaction
strengths b or g are increased beyond a certain level, bc or gc,
feasibility is lost and extinctions abound. However, in contrast to
pairwise interactions, the critical thresholds for high-order
interactions do not decrease with the number of species. The
critical threshold of three-way interactions bc remains
unchanged, while the critical threshold of four-way interactions
gc increases in proportion to the number of species (Fig. 2a).
These four-way interaction communities can therefore withstand
stronger interactions the more species they have. For a fixed
strength of four-way interactions, these communities are
stabilized, rather than destabilized, as the number species
increases (Fig. 2c; increased stability with diversity can also
appear in reciprocity models21). Thus, while pairwise interactions
put a higher bound on diversity, it is a lower bound that is created
by high-order interactions. Provided that the total abundance is
constant (does not change with the number of species), these
results are robust to various changes in the underlying model:
they hold for different distributions of the random coefficients
(Supplementary Fig. 2), for connectance values smaller than 1
(Supplementary Fig. 3) and when high-order diagonal terms are
set to zero (Cijka0 only when iajakai; Supplementary Fig. 4).
Similar scalings of the critical strengths of the different
interaction orders with the number of species also occur when
the dynamic equations are replaced by a Lotka–Volterra model
(Supplementary Fig. 5).

Diversity scales differently with different interaction orders. To
better understand the relation between the diversity of a
community and its sensitivity to interactions of different orders,
we examine a modified pairwise interactions matrix that captures
the high-order interactions around a fixed point. Considering
an approximation for how the interactions of different orders
contribute to the effective pairwise interactions considered in the
analysis by May14 (namely, the Jacobian), we derive a scaling
relationship for the dependence of the feasible range of N on the
different orders of interactions (see the ‘Methods’ section,
Supplementary Fig. 6):

aþ b
N

þ g
N2

þ . . . o
1
N
: ð2Þ

Intuitively, this condition tests whether the s.d. of the sum of all
random interactions affecting a species near a fixed point is
smaller than the self-stabilizing term (assuming fixed total
abundance, see the ‘Methods’ section).

This theoretical analysis explains the different scaling of each of
the interaction orders with N in accordance with our simulation
results (Fig. 2a). When high-order interactions are turned off
(only a40), the critical strength of pairwise interactions ac
decreases as 1/N. The critical threshold of exclusively three-way
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Figure 2 | The destabilizing effect of diversity is inverted when

interactions are high-order. (a) The critical strength of interactions

beyond which the community becomes unfeasible (defined as the

value at which 5% of random communities exhibit extinctions; error-bars

indicate the range of 2–10%). While the critical strength of pairwise

interactions decreases with community diversity (ac, red, slope¼
� 1.20±0.05), it remains unchanged for three-way interactions (bc, blue,
slope¼ �0.07±0.04) and increases for four-way interactions (gc, green;
slope¼0.95±0.04). (b) Example simulations of two communities with

pairwise interactions of the same strength but with different numbers of

species (N¼ 7, left; N¼ 20, right; red square and circle in a). While the

small community shows convergence to a stable fixed-point with all species

coexisting, the large community exhibits species extinction. (c) As shown in

b, but for communities with four-way interactions. Here the trend is

reversed, and the small community exhibits extinctions, while the large

community exhibits stable coexistence.
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interactions bc does not depend on the number of species, while
that of strictly four-way interactions gc is proportional to the
number of species. Thus, interactions of any given order
destabilize communities, and the effects of different orders are
additive, but they scale differently with diversity. Small
differences between these theoretical slopes and the numerical
slopes of Fig. 2a might result from the small species numbers of
the simulations, for which the analytic analysis holds only
approximately.

Mixed interactions define range of allowed diversities. Since
communities with a small number of species are sensitive to
high-order interactions, while communities with a large number
of species become sensitive to pairwise interactions, we asked
whether the combination of pairwise and high-order interactions
might dictate an intermediate range of species numbers that
optimizes feasibility. To answer this question, we ran simulations
with both pairwise and four-way interactions for three different
community sizes N (for simplicity we set b¼ 0; the effect of b40
is discussed below). For each value of N, we scanned a and g and
identified the domain where communities are feasible (Fig. 3a).
Since the critical value of a decreases with N, while the critical
value of g increases, there are regions where an intermediate-sized
community would be feasible, while either smaller or larger
communities would not (area within the N¼ 8 domain but not
within the N¼ 5 or the N¼ 18 domain). To understand how
the feasibility of specific communities depends on the number
of species, we ran simulations where we gradually add
species with random interactions to communities with
given values of interaction strengths a and g: pairwise-dominated,

four-way dominated and mixed. When pairwise interactions
are dominant, feasibility decreases when N is increased
beyond a threshold (Fig. 3b). In contrast, when four-way
interactions are dominant, the community becomes sensitive to
the removal of species (Fig. 3d). In the mixed case, when
pairwise and high-order interactions are combined, feasibility is
maximized for an intermediate number of species; both the
removal and the addition of species destabilize the community
(Fig. 3c).

The combination of pairwise and high-order interactions thus
defines a range of stable diversities. Assuming that a given
natural ecosystem can be characterized by its average strengths of
interactions of different orders (a, b, gy), which are
characteristics of its species and the environment, the upper
and lower bounds on its diversity N can be derived as the roots of
equation 2 (see the ‘Methods’ section; Supplementary Fig. 7). As
the total strength of interactions aþbþ g increases, these upper
and lower bounds grow closer and the range of allowed diversities
narrows around a defined number of species N* (Fig. 4 for b¼ 0;
using b¼ g gives qualitatively similar results, Supplementary
Fig. 8). This value of optimally stable diversity is determined by
the relative strengths of the four-way and pairwise interactions
(N� ¼

ffiffiffiffiffiffiffi
g=a

p
, see the ‘Methods’ section). High-order dominated

and strong interactions can thus require communities to maintain
a large number of species to remain feasible.

Discussion
The combination of pairwise and high-order interaction
strengths determines both upper and lower bounds on the
diversity of multi-species communities. While very little is known
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and 18 species communities in the space of pairwise a- and four-way g-interaction strengths (assuming no three-way interactions, b¼0). Dots show the

critical thresholds at which 5% of the simulations become unstable when the interaction strengths increase along radial lines in the loga-logg space

(see the ‘Methods’ section). (b–d) The fraction of stable communities over the initial number of species is shown for three combinations of pairwise and

four-way interaction strengths (at the points labelled by ‘x’ in panel a); pairwise-dominated in b, mixed pairwise and four-way in c, and four-way dominated

in d. When pairwise interactions dominate, diversity is bounded from above; when four-way interactions dominate, a lower bound on diversity appears;

with both types of interactions, the level of diversity is defined to a narrow range, and within this range the community is sensitive not only to the addition

but also to the removal of species.
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about the abundance and strength of high-order interactions
in nature, these results bring a new perspective to understand
much empirical evidence showing that communities are
sensitive not only to the addition of species but also
to the opposite perturbation, namely the removal of
species47–50. Considering the perplexing effects of high-order
interactions may allow a better understating of why high
diversity is often a necessity rather than an option for natural
ecosystems.

Methods
Numerical simulations of community dynamics. To find the probability that a
random community made up of N species with specified strengths of pairwise and
high-order interactions is feasible, we numerically integrate equation 1 with
different randomizations of the interaction matrices. For a given N, we generate a
set of random pairwise, three- and four-way interaction matrices ~A; ~B; ~C

� �
, and

then for a given choice of a, b, g we substitute into equation 1: A ¼
ffiffiffi
a

p
~A, B ¼

ffiffiffi
b

p
~B

and C ¼ ffiffiffi
g

p ~C. We then follow the species abundances as they change
from a uniform initial value (xi¼ 1/N; in the stable regime, the equations
should not be sensitive to initial conditions45) using the MATLAB ode45 solver
with default integration properties. Simulations were ended when they reach a
persistent state (steady-state or bounded oscillations). We repeat this process
R times (B300) with different sets of random pairwise, three- and four-way
interaction matrices.

We concluded that a community had reached a persistent state by demanding
that the entropy (�Sixi log(xi)) remain constant or bounded in its fluctuations.
We evolve the equations for a fixed number of time units (Dt¼ 10), and after each
of those intervals, we calculate the ratio between the minimal value taken by the
species distribution entropy in two different periods of time: the last tenth and the
last three-tenths of the simulation time length. If the ratio between those two
values, as well as the similar ratio between the entropy maxima in those two
periods, falls within a range of E ¼ 10� 5 of 1, we concluded the simulation. If this
condition was not met after a long time (104 time units) we concluded the
simulation as well, and to account for the possibility that a species would have
become extinct after this time threshold, we counted those simulations as
unfeasible in the calculation of the lower error-bars.

We defined a community as feasible if all the species existed at the end of the
simulation, with an abundance above a defined threshold (set as 10� 5/N). The
probability that a community would be feasible was then defined as the fraction of
stable communities out of the R random communities simulated. To find the
critical strength of interactions for a given number of species, we used a fixed
collection of R sets of pairwise, three- and four-way interaction matrices ~A; ~B; ~C

� �
and increased the interaction parameters until 5% of the communities exhibited
extinctions. In Fig. 2 (as well as Supplementary Figs 2–5) this was done by
increasing the strength of interactions of a given order, while the rest are kept at 0.
In Fig. 3a this was done along radial lines in log (a), log (g) space:

a¼ 0.001 � 1.2r � cos y, g¼ 0.05 � 1.3r � sin y, such that for each value of y, we increased
r until stability was lost.

Deriving stability criterion by considering effective pairwise interactions.
The Jacobian of the system at a given point is:

Jij ¼dij fi �
X

xjfj
� �

þ xi � dij þAij þ
X
k

xk Bijk þBikj
� � 

þ
X
k;l

xkxl Cijkl þCikjl þCiklj
� �

þ � � �

þ 2xj �
X
k

xk Ajk þAkj
� �

�
X
k;l

xkxl Bjkl þBkjl þBklj
� �

þ . . .

!

Where, dij ¼
1 i ¼ j
0 i 6¼ j

	
is the Kronecker delta. At a fixed point, the first term

vanishes. We may also neglect the terms in the last line which are derivatives of the
normalization, as we will justify below. Assuming stability of all species coexisting,
the value of species abundances at this fixed point must scale as xiE1/N
(because the total abundance is fixed to 1). Equation 1 can therefore be
approximated as pairwise dynamics:

_xi ¼ xi
XN
j¼1

Aeff
ij xj

with

Aeff
ij � � dij þ

ffiffiffi
a

p
~Aij þ

ffiffiffi
b

p XN
k¼1

~Bijk þ ~Bikj

N
þ ffiffiffi

g
p XN

k¼1

XN
l¼1

~Cijkl þ ~Cikjl þ ~Ciklj

N2
þ . . .

the fixed point will be stable if the eigenvalues of the Jacobian all have negative real
parts. Within our assumption xiE1/N, we may focus on the eigenvalues of Aeff,
which differs from the Jacobian by a constant factor N that does not affect the signs
of the eigenvalues (as previously reported15, the actual Jacobian in a steady-state
deviates somewhat from this simple analysis due to deviation of the fixed-point xi
from 1/N; Supplementary Fig. 9).

The entries of the random component of Aeff are sums of independent
identically distributed Gaussians with 0 mean, and the variance of such a sum is
additive. For simplicity, we assume that only elements with j4k4l are non-zero
(such as in Supplementary Fig. 4), so the three-way interactions term averages over
N-1 such elements and its variance is therefore BN times smaller, and similarly
with the higher-order terms. The variance of the random component of Aeff is thus
given by:

aþ b
N

þ g
N2

þ . . .

by Girko’s circular law, as N-N, the eigenvalues of a random matrix M of order
N�N will form a disk of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðMÞ � N

p
around the origin on the complex

plane. In a large enough community, and taking into account the stabilizing term,
the eigenvalues of Aeff will therefore be approximately distributed in a disc around
(� 1, 0) (Supplementary Fig. 6), so that the community will be stable with high
probability if the radius of the disc is smaller than 1, or:

aþ b
N

þ g
N2

þ . . . o
1
N

If we remove the assumption that only elements with j4k4l are non-zero, the
high-order interaction strengths in the last equation are multiplied by constant
factors, but the scaling is unaffected.

This analysis does not depend on the specific distribution of the matrix
elements51, as long as their variance is fixed, and our simulations indeed show it
holds for different distributions (Supplementary Fig. 2). Similar scaling
results can be obtained relying on Gershgorin’s circle theorem (see ref. 52
for the case of pairwise interactions; generalization to high-order case follows
from the same reasoning applied above). The normalization term should not
have a significant impact on the instantaneous stability analysis, since by
the same reasoning, its contribution to the variance of the Jacobian would be N
times smaller than the interaction term, as it is itself an average of N interaction
terms. However, this analysis does depend on the sum of species abundances being
constant (and xi thereby scaling as 1/N); a different scaling of critical interaction
strengths will appear when the total abundance scales with the number of
species41,42,46.

Note that local stability analysis models exclusively pairwise interactions, since
the equation is linearized around a point and the high-order interactions are
therefore embedded in the coefficients of the effective pairwise interactions
obtained in the linearization. Our analysis therefore extends the result by May14 in
the sense that it suggests how the interaction strength in the Jacobian May analyses
should scale with the number of species with respect to the strengths of interactions
of different orders.

Deriving stability criterion by analysis of interaction variance. The same
scaling of diversity with interactions of different orders can also be obtained by
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when accounting for three-way interactions (Supplementary Fig. 8).
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demanding that the expected variance of the random interactions be weaker than
the self-stabilizing term. The n-species interaction term is given by:

ffiffiffiffiffiffiffiffi
a nð Þ

p XN
i1 ;i2 ; ... ;in� 1

gA nð Þxi1xi2 � � � xin� 1

with gAðnÞ an n-dimensional interaction tensor whose variance is 1, and a(n)

the strength of the n-species interactions. Since the value of species abundances
near a fixed point with all species coexisting scales as xiE1/N, and from the
additivity of the variance of independent random variables, the standard
deviation of such a term scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðnÞN �ðn� 1Þ

p
. Comparing this value with

the stabilizing term |� xi|E1/N, we get the condition a(n)oNn� 3, in
agreement with our result (ao1/N for pairwise interactions, bo1 for three-species
interactions and so forth). The additivity of the variance allows us to extend
this reasoning to obtain equation 2 when interactions of different orders are
combined.

The optimal community size N*. Restricting interactions up to the fourth order,
communities are stable if they satisfy the equation:

aþ b
N

þ g
N2

o
1
N

demanding an equality and solving for N gives the lower and upper bounds for
number of species:

Nmin;max ¼
1�b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bð Þ2 � 4ag

q
2a

these two bounds narrow around a defined optimal number of species when the
discriminant vanishes: 1�b ¼ 2

ffiffiffiffiffi
ag

p
, which gives N� ¼

ffiffiffiffiffiffiffi
g=a

p
.

Code availability. MATLAB code for the replicator and Lotka–Volterra models is
available from the corresponding author on request.

Data availability. The simulation results are available from the corresponding
author on request.
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