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From natural ecology1–4 to clinical therapy5–8, cells are often 
exposed to mixtures of multiple drugs. Two competing null 
models are used to predict the combined effect of drugs: 
response additivity (Bliss) and dosage additivity (Loewe)9–11. 
Here, noting that these models diverge with increased num-
ber of drugs, we contrast their predictions with growth mea-
surements of four phylogenetically distant microorganisms 
including Escherichia coli, Staphylococcus aureus, Enterococcus 
faecalis and Saccharomyces cerevisiae, under combinations 
of up to ten different drugs. In all species, as the number 
of drugs increases, Bliss maintains accuracy while Loewe 
systematically loses its predictive power. The total dosage 
required for growth inhibition, which Loewe predicts should 
be fixed, steadily increases with the number of drugs, fol-
lowing a square-root scaling. This scaling is explained by an 
approximation to Bliss where, inspired by R. A. Fisher’s clas-
sical geometric model12, dosages of independent drugs add up 
as orthogonal vectors rather than linearly. This dose-orthogo-
nality approximation provides results similar to Bliss, yet uses 
the dosage language as in Loewe and is hence easier to imple-
ment and intuit. The rejection of dosage additivity in favour of 
effect additivity and dosage orthogonality provides a frame-
work for understanding how multiple drugs and stressors add 
up in nature and the clinic.

In both nature and the clinic, cells are often exposed to combina-
tions of multiple stresses and drugs. In natural ecosystems, such as 
the soil, dozens of microbial species capable of producing differ-
ent antimicrobial compounds coexist in very close proximity, thus 
exposing each other to a mixture of multiple stressors1–4. In clini-
cal settings, drug combinations, aimed at reducing side effects and 
counteracting resistance13–17, are becoming increasingly important 
in treatment for infectious diseases and cancer5–8,18,19. It is therefore 
of wide importance to understand how cell growth is affected by 
combinations of a multitude of stressors, and thereby the general 
rules of high-dimensionality drug arithmetic.

When combined together, drugs can interact to synergize or 
antagonize each other’s effects relative to a null additive model. 
Synergy occurs when the combined effect of drugs is larger than 
expected based on their individual effects. Conversely, drugs can 
also antagonize each other, leading to a combined effect that is 
smaller than expected. These interactions are important in clinical 
settings as a way of increasing treatment potency and selectivity20–22 
or slowing selection for resistance14,17,23. Importantly, the definition 
of both synergy and antagonism relies on comparing the effect of 
drug combinations with a null model of ‘additive expectation’6,24–27.

There are two primary models for the null effect of drug combi-
nations6,28: the Bliss model10,29, which assumes response additivity; 
and the Loewe model9,11, which assumes dose additivity. According 

to Bliss, the combined effect of two drugs E1 + 2 is simply the sum of 
their individual effects30, E1 + 2 =​ E1+​E2, where Ei =​ (g0 – gi)/g0 is the 
effect of drug i on the normalized growth rate g/g0 (Fig. 1; when 
effects are measured on the basis of total yield rather than growth rate, 
Bliss additivity becomes multiplicativity; Supplementary Note 1).  
In contrast, according to Loewe additivity, the effect of drugs in 
combination is determined not by the sum of their normalized 
effects, but rather by the sum of their normalized dosages, such that 
their combined effect is the same across all combinations that have 
the same total normalized dosage. Namely, according to Loewe, 
lines of equal combination effect in drug-dosage space (isoboles) 
are linear26 (Fig. 1). For example, if two drugs are additive with 
respect to Loewe, their 50% inhibition isobole is a straight line sat-
isfying ∕ + ∕ =d d d d 11 1

50
2 2

50 , where di is the dose of drug i and di
50 is 

the dose at which drug i alone causes 50% growth inhibition (IC50). 
Although conceptually different from one another, mechanistic 
support is available for both the Bliss and the Loewe models31 and 
there is no agreement on which model should generally be used32–35. 
Models that implement pairwise interaction data as well as higher-
order interactions can improve multidrug predictions of either Bliss 
or Loewe21,36–39. Yet, regardless of pairwise interactions, it remains 
unknown which of these two null models best predicts the com-
bined effect of multiple drugs.

Here, measuring bacterial response to antibiotic combinations, 
we contrast the Bliss and Loewe models for an increasing number of 
drugs, where we show that expectations of these models increasingly 
diverge. We focus on four very different organisms: Escherichia coli 
as a model Gram-negative bacterium, Saccharomyces cerevisiae as a 
model eukaryote and the clinically important Gram-positive patho-
gens Staphylococcus aureus and Enterococcus faecalis. Quantifying 
their response to combinations of up to ten different drugs, we find 
that the Bliss model maintains accuracy with increased number of 
drugs, while the Loewe model loses its predictive power. Indeed, in 
contrast to Loewe, which predicts that the total drug dosage required 
for inhibition is constant, we find that total dosage increases mono-
tonically with the number of drugs. Interestingly, our data show that 
this increase follows a square-root scaling, inspiring a simple model 
for orthogonality of dose additivity that follows a classical evolu-
tionary optimization principle developed by R. A. Fisher12.

To contrast the Bliss and Loewe models, we calculated how 
their predictions scale with increased number of drugs. As a natu-
ral measure of the combined potency of multiple drugs, we con-
sidered the total drug dosage needed to achieve a given level of 
inhibition. Defining ‘total dosage’ (D) as the sum of the concen-
tration of the individual drugs weighted by their corresponding 
IC50 values, = ∑D d d/i i i

50, the ‘combination potency’ (D50) is the 
total dosage D that yields 50% growth inhibition. As the number of 
drugs N increases, Loewe additivity predicts that the combination 
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potency remains fixed, =D N( ) 1oeweL
50 . The prediction of Bliss, on 

the other hand, depends on the individual dose response curves 
of the different drugs. Assuming a Hill equation40 for the single-
drug dose response = ∕ + ∕E d d d( ) 1 [1 ( ) ]i i i i

h50 , where h is the 
Hill coefficient, and equating the Bliss prediction of the com-
bined effect = ∑.. = ..E EN i N i1 1  to 50%, yields the Bliss-predicted 
scaling of combination potency with the number of drugs: 

= − −D N N N( ) (2 1) h
Bliss
50 (1/ ). Thus, while Loewe predicts that the 

total dosage required for inhibition is constant, Bliss predicts that 
it increases with the number of drugs (assuming Hill coefficient, 
h >​ 1). The two models can therefore best be contrasted by measur-
ing the combined action of increased number of drugs.

Starting with E. coli, we considered ten mechanistically different 
antibiotics and measured their growth-inhibitory effect individu-
ally as well as in combinations with increased number of drugs. We 
chose antibiotics acting on a range of cellular functions, including 
cell wall synthesis, DNA replication, transcription and translation 
(Supplementary Table 1). Measuring optical density (OD) versus 
time of bacterial growth on gradients of each of the individual drugs, 
we determined the dose response curve g(di) for each of the drugs 
(Fig. 2a and Supplementary Fig. 1). These dose response curves 
are well fitted by Hill functions, defining the concentrations di

50 of 
50% inhibition for each of the drugs in isolation (Supplementary  
Fig. 13a,b).

Moving to drug pairs, we measured their combination potency 
and compared it to Bliss and Loewe predictions. We first measured 
the full response surface across two-dimensional dose gradients for 
two drug pairs: tetracycline and ciprofloxacin (TET–CIP) and tet-
racycline and erythromycin (TET–ERY), representing well-known 
examples of antibiotic antagonism and synergy (Fig. 2b,c response 
surface and IC50 isoboles; Supplementary Fig. 12a)41,42. Using the 
growth measurements of the individual drug gradients Ei(di), we 
derived the response surface and the IC50 isobole predictions of 
Loewe (straight line connecting the points d[ , 0]1

50  and d[0, ]2
50 ) 

and Bliss (the set of all points [d1, d2] satisfying E1(d1) +​ E2(d2) =​ 50%, 
Methods). As expected, the measured IC50 isobole lies above these 
predictions for the TET–CIP pair (indicating antagonism) and below 
for the TET–ERY pair (indicating synergy). While these two-dimen-
sional gradients allow clear definition of synergy and antagonism, 
they require many growth measurements and become combinatori-
cally prohibitive in a high-dimensional multidrug space.

To effectively sample the concentration space of multiple drugs, 
we performed growth measurements along a ‘co-potent’ line38, a 
curve in concentration space where the individual drugs have equal 
potencies in isolation (E1(d1) =​ E2(d2) =​ .. =​ EN(dN), Fig. 2b–e). This 
co-potent line sampling method vastly reduces the dimensionality 
of the required measurements while guaranteeing that null models 
are evaluated in a region in drug concentration space where all drugs 
are active, rather than one in which the combined effect is domi-
nated by a subset of drugs. Identifying the point P =​ (d1,d2,...,dN) 
on the co-potent line where growth is inhibited by 50% yields the 
combination potency, = ∑ ∕D d data i i iD

50 50. This measured combina-
tion potency was contrasted with the expected potencies D lissB

50  and 
D oeweL

50 , defined as the points along the co-potent line where the sin-
gle-drug-based calculations of Bliss and Loewe predict 50% inhibi-
tion (Methods). The interaction between drugs was then defined as 
the deviation between the observed and predicted potencies of the 
combination ε = ∕og D Dl ( )ata odelD

50
M
50 , which captures the extent of 

antagonism (ε >​ 0) and synergy (ε >​ 0) (Fig. 2d,e).
Measuring combination effects for all drug pairs, we find that 

their joint potencies are similarly well predicted by both the Bliss 
and the Loewe models. For each of the 45 drug pairs, we mea-
sured their dose response along co-potent concentration gradi-
ent and determined their combination potency, D ataD

50  (Methods,  
Fig. 2f and Supplementary Figs. 12b and 13a). Comparing these 
combination potencies with predictions of the Bliss and Loewe null 
models, we find that both positive (ε >​ 0, antagonism) and negative 
(ε >​ 0, synergism) deviations are prevalent with respect to either 
model (Fig. 2f,g). This prevalence of both antagonism and syn-
ergy among drug pairs overwhelms any small deviations between 
the two models (Fig. 2g; σ(εBliss) =​ 0.39; σ(εLoewe) =​ 0.39;<​εBliss>​ −​ <​
εLoewe>​ =​ −​0.066, t-test: P =​ 0.42). Further, clustering drugs on the 
basis of these pairwise interactions, defined with respect to either 
Bliss or Loewe, leads to similar grouping by mechanism of action 
(Supplementary Fig. 2; possible small advantage to Bliss in resolv-
ing fine functionality differences)43. The similarity of pairwise null 
predictions, the prevalence and magnitude of pairwise interac-
tions with respect to both models, and their similar correlation 
with cellular function prohibit distinction of the Loewe and Bliss 
null models based on drug pairs.

However, for increasing number of drugs, we find that the com-
bined effect is well predicted by Bliss, while the Loewe prediction 
systematically diverges. Given that predictions of the two models 
should diverge with increased number of drugs, we measured the 
combined effect of multiple combinations with a varying number 
of antibiotics. We chose 35 combinations of 3 to 10 antibiotics, 
including 8 randomly chosen sets from each combination size of 
N =​ 3, 5 and 7 drugs, all 10 sets of 9 drugs, and the whole 10-drug set 
(Fig. 3a,b; Supplementary Figs. 3a, 12c and 13b and Supplementary 
Tables 9 and 10). Following the procedure used for the drug pairs, 
we measured the combined effect of each multidrug set as a func-
tion of total dosage along co-potent lines and identified their com-
bination potencies D50. Contrasting these measured potencies with 
the predicted potencies of Bliss and Loewe based on the single-drug 
measurements, we find that the Bliss model maintains good accu-
racy regardless of the number of drugs, while the accuracy of the 
Loewe model declines as the number of drugs increases (Fig. 3c, 
dots, and Supplementary Figs. 4 and 5). This rejection of Loewe 
in favour of Bliss is independent of the co-potency of the drug 
mixture (Supplementary Fig. 6) and also appears when using the 
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Fig. 1 | Schematic depiction of effect additivity (Bliss) and dosage 
additivity (Loewe). Given fitness as a function of dosage of each of the 
individual drugs (fi =​ 1 – Ei, dose response curve, black solid line), Bliss 
and Loewe models predict the fitness f1 + 2 =​ 1 – E1+2 at any given point 
P =​ [d1,d2] in the drug concentration space. The Bliss prediction assumes 
additivity of normalized drug effects, = ++E E EBliss

1 2 1 2, where E1 and E2 are the 
individual drug effects at their cognate concentrations (cyan and red piles, 
respectively). The Loewe model, on the other hand, assumes additivity of 
normalized drug dosage, such that the combined drug effect is fixed along 
linear lines of constant total normalized dosage (yellow, +E Loewe

1 2  equals 
50% in the example point P, and more generally is given by solving for 
E: ∕ + ∕ =d d d d 1E E

1 1 2 2 , where di
E is the concentration of drug i that leads to 

inhibition level E).
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Fig. 2 | Pairwise measurements do not resolve the Bliss and Loewe models of additivity. a, Representative single-drug dose response curve showing the 
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h
0 T T

50 ETT , black line) 
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50 , green dashed line). Inset: growth rates g were calculated by fitting OD600 nm measurements over time (black) to exponential function, 
OD =​ OD0⋅​2g⋅t +​ ODBG (cyan and red). b,c, Response surface showing growth rates (greyscale indicated in a) over a two-dimensional grid gradient (dots) 
of the antagonistic antibiotic pair TET–CIP (b) and the synergistic pair TET–ERY (c). The measured IC50 isoboles (green) are contrasted with Bliss (purple) 
and Loewe (orange) predictions. Indicated are the co-potent lines (circles), the corresponding co-potent single drugs (black crosses for TET, black 
diamonds for CIP and ERY) and the IC50 values (green symbols). d,e, Dose response along the co-potent line of the two drug mixtures (TET–CIP, d;  
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2 2

50. Measured normalized growth rates of the combined drugs are contrasted with Bliss 
and Loewe predictions based on the single-drug data (shown below). All symbols correspond to those in b and c. f,g, Data–model deviations 
(ε = ∕og D Dl ( )ata odelD

50
M
50 , indicates the difference between measured (D ataD

50 ) and predicted ( ∕D liss LoeweB
50 ) combination potencies) for each of the two models 

are presented as an interaction matrix (f) and a box plot (g, box at first and third quartiles, whiskers at mean ±​ two standard deviations, black dashed line 
represents perfectly accurate prediction). There is no significant difference between the models in their predictions of measured pairwise potencies (45 
different combinations, two-sided t-test, P =​ 0.42).
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multiplicative form of the Bliss model (more suitable for yield mea-
surements, Supplementary Note 1; Supplementary Fig. 7), as well as 
when considering alternative derivation of growth rates from OD 
curves (Supplementary Fig. 1c)44. Our E. coli growth data therefore 
show that the effect of combinations of many diverse drugs is well 
predicted by Bliss, and not by Loewe.

To test the generality of these findings, we applied our method-
ology to the Gram-positive pathogens E. faecalis and S. aureus as 
well as to the eukaryotic model of S. cerevisiae. For each of these 
organisms, we chose a repertoire of diverse drugs and measured 
their combined effect in random sets of increased number of drugs 
(up to eight in S. aureus, six in E. faecalis and five in S. cerevisiae; 
Supplementary Tables 1, 9 and 10 and Supplementary Figs. 3b–e, 
12d–g and 13c–f). As in E. coli, both the Bliss and Loewe models 
provided comparable predictions for combinations of small num-
ber of drugs and when the number of drugs increases the fitness 
was well predicted by Bliss while Loewe’s prediction diverged  
(Fig. 3c and Supplementary Figs. 4 and 5). Furthermore, the power 
of Bliss over Loewe is also seen for combinations involving strongly 
synergistic drug pairs, treating the pair mixture as a single agent 
(TMP–SLF in S. aureus; Supplementary Fig. 8). We conclude that 
across species the Loewe model, predicting that the total dosage 
required for inhibition is fixed regardless of the number of drugs, 

can be rejected as a general predictor for the potency of diverse mul-
tidrug combinations.

Next, we tested how the potency of drug combinations, namely 
the total dosage required for inhibition, varies with the number of 
drugs. To account for any slight experimental deviations from the 
ideal co-potent line, we use a natural entropy-like definition of an 
effective number of drugs Neff that is based on the uniformity of 
the individual drug effects (Neff equals N if all drugs have the same 
effect; is slightly smaller than N when these effects are uneven; and 
converges to 1 at the extreme case when a single drug dominates; see 
definition of Neff in Fig. 4 caption). Contrary to the Loewe predic-
tion, we find that the total dosage required for inhibition increases 
with the effective number of drugs (Fig. 4a and Supplementary Fig. 
8a). Moreover, this inhibitory total dosage seems to obey a simple 
scaling law: it increases as the square root of the effective number of 
drugs (D50 =​ (Neff)α, least-square fit yields: α =​ 0.47 ±​ 0.03).

The square-root scaling of the inhibitory dosage with number 
of drugs can be explained by an approximation to Bliss, inspired by 
the classical optimization principle of Fisher’s geometric model of 
adaptation12. Fisher’s model describes the fitness f in a space of N 
independent orthogonal phenotypes and assumes that it declines as 
a function of the Euclidean distance from an optimal point ( = −f e r 2

,  
where = ∑ = ..r xi N i

2
1

2 and xi are phenotypic distances from the  
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optimal point). For a given fitness value, the phenotypic distances xi 
therefore decline as ∕ N1  and their sum, = ∑ = ..D xi N i1

2, increases 
as N . The analogy of drug dosages with Fisher’s phenotypes, and 
more generally the analogy of drug and mutations, explains the 
square-root scaling of total inhibitory dosage with number of drugs 
and underscores that drug concentrations should be summed not 
linearly by simple addition as in Loewe, but rather as the geometric 
sum of orthogonal vectors (Fig. 4b; of course, orthogonality is an 
idealization from which drug combinations can deviate due to syn-
ergy or antagonism, or when similar drugs act along the same axis). 
This Fisher-inspired ‘dose-orthogonality’ model can also be derived 
as a second-order approximation of Bliss additivity at the limit of 
small dosages, emphasizing the dependency of this approximation 
on optimality of the growth rate at the origin (Supplementary Note 2; 
for Hill coefficients close to 1, as common in the drug combinations 
applied to E. faecalis, Bliss prediction can be closer to Loewe than 
to Fisher). Indeed, we find that even strongly interacting drug pairs 
assume more circular isoboles for small fitness effects (Fig. 2b,c and 
Supplementary Fig. 10) and that the square-root scaling becomes 
more accurate at a lower level of inhibition (Supplementary Fig. 9b). 
Similarly to Bliss and in contrast to Loewe, combination potency pre-
dictions of this dosage-orthogonality model (derived by intersecting 
the co-potent lines with spherical IC50 isoboles ∑ ∕ =d d( ) 1i i i

50 2 , 
Methods) are consistent with the drug combination measurements 
(Fig. 4c). Yet, unlike Bliss these predictions do not require fine  

measurements of the minute individual drug effects Ei(di), but rather 
depend on the more robust measurements of their individual IC50 
dosages, di

50. While it allows the use of dose language like Loewe, the 
dose-orthogonality model provides an intuitive and robust approxi-
mation of Bliss’s response additivity (Supplementary Table 2), which 
well predicts the potency of drug combinations and explains the 
square-root scaling law of potency with number of drugs.

Across diverse taxons, our measurements reject the Loewe model 
of dosage additivity for predicting the effect of combination of mul-
tiple diverse drugs, favouring the Bliss effect additivity and motivat-
ing a simple model of dosage-orthogonality. In contrast to Loewe 
additivity, which predicts that the total dosage required for inhibi-
tion is fixed, we find that the total inhibitory dosage increases with 
the number of drugs, following a square-root scaling law. This gen-
eral reduction in potency with increased number of drugs could be 
important for understanding ecological environments where bac-
teria are exposed to a multitude of drugs and stresses and any one 
toxin does not typically work on its own but rather combined within 
a complex soup of natural inhibitors. While the results could also 
be important in the clinical settings where multiple drugs are com-
bined, any such implications will require extending the conceptual 
approach and methodology and to consider the killing regime, the 
impact on multispecies communities and the complexity that stems 
from transient effects introduced by the pharmacokinetics and 
pharmacodynamics of each of the individual drugs. The square-root  
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Fig. 4 | A square-root scaling law of inhibitory total dosage with effective number of drugs is explained by a simple dosage-orthogonality model. a,  
The combination potency, D ataD

50  of all 172 different drug combinations is plotted as a function of effective number of drugs ( = − ∑N p pexp[ log( )]i i ieff ,  
where = ∕ ∑p E Ei i j j, and Ei(di) are the single-drug individual effects at their cognate concentrations; colours represent the actual number of drugs, N). 
In contrast to Loewe, which assumes that the total dosage required for inhibition is fixed (yellow line), the total dosage increases as the square root of 
the effective number of drugs (black line, fit of D50 =​ (Neff)α yields α =​ 0.47 ±​ 0.03, 0.95 confidence interval). b, The square-root scaling is explained by a 
Fisher-inspired dose-orthogonality model, which assumes that for small perturbations the dosages of independent drugs should be added as orthogonal 
vectors rather than linearly as in Loewe. Hence, isoboles of X% inhibition are spherical surfaces defined by ∑ ∕ =d d( ) 1i i i

X 2
 (Fisher, bottom, circles in two-

drug space, blue line) instead of linear surfaces (Loewe, top, straight lines in two-drug space, yellow line). c, Data–model deviation ε= ∕D D log( )ata odelD
50

M
50  

of all the combinations of more than two drugs for each of the three models (box at median and first and third quartiles, whiskers at mean ±​ two standard 
deviations, black dashed line represents perfectly accurate prediction). The data strongly reject Loewe and are instead consistent with both Fisher and 
Bliss (96 data points, two sided t-test: Loewe, P <​ 10−40; Bliss, P =​ 0.61; Fisher, P =​ 0.8).
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scaling supports a model for drug additivity where dosages of inde-
pendent drugs add up orthogonally rather than linearly. This dos-
age-orthogonality model provides an approximation to Bliss, yet it 
uses dosage arithmetic that allows a more robust implementation 
and simple intuition. It will be interesting to explore the generality 
of these results and the limit on the number of orthogonal pharma-
cological axes as more antibiotics and stresses are added, as well as 
beyond the minimal inhibitory concentration and in more complex 
systems such as in cancer therapy. Throughout such clinical systems 
and natural ecologies, our findings provide a uniform framework 
for understanding the null arithmetic of many-drug combinations.

Methods
Strains and media. Experiments were performed with: E. coli strain MC4100 in 
M9 media (Na2HPO4 6 g /l−1, Na2HPO4 3 g l−1, NaCl 0.5 g l−1, NH4Cl 1 g l−1, glucose 
2 g l−1, Casamino acids 1 g l−1, thiamine 0.34 g l−1, MgSO4 1 mM, CaCl2 0.1 mM);  
S. aureus sp. Rosenbach (ATCC 29213 - Wichita) in Mueller–Hinton broth;  
E. faecalis ATCC 49757 in brain heart infusion broth; and S. cerevisiae BY4741 
Euroscarf in YPD broth (yeast extract 1%, peptone 2%, glucose 2%). Antibiotics 
were added as indicated (Sigma Aldrich).

Growth rate assay. The data represent seven different experimental set-ups: 
three for E. coli: two-dimensional gradient of ERY–TET and CIP–TET (Fig. 2b–e 
and Supplementary Figs. 9 and 12a), all 45 pairwise combinations (Fig. 2f,g and 
Supplementary Figs. 12b and 13a), and 35 combinations of order higher than 
two (Figs. 3 and 4, dots, and Supplementary Figs. 12c and 13b); two for S. aureus: 
22 combinations not involving beta-lactam antibiotics, and 21 combinations 
involving beta-lactam antibiotics (Figs. 3c and 4, triangles, and Supplementary 
Figs. 12d,e and 13c,d); one for E. faecalis, composed of 23 combinations (Figs. 3c 
and 4, squares, and Supplementary Figs. 12f and 13e); and one for S. cerevisiae, 
composed of 26 combinations (Figs. 3c and 4, stars; Supplementary Figs. 12g and 
13e). In each of these experiments, an inoculum of 104 cells was inoculated into 
150 μ​l of media in a Nunc 96-well flat-bottom microplate. Antibiotics were added 
into the wells as indicated using a D300e digital dispenser (Tecan), which dispenses 
a nanolitre-scale volume of each antibiotic. Each concentration combination was 
performed in duplicate wells. Multiple untreated control wells (no antibiotics) 
were designated on each plate (2–6% of the wells in each experiment). To avoid 
systematic positional effects across the plates, the wells chosen for each drug 
combination on the plates were randomized. The plates were incubated at 30 °C 
with shaking (Liconic orbital shaker STX44), and OD600 nm was measured at least 
every 25 min using a Tecan robotic system and the Infinite M200 Pro reader. 
To enhance uniformity, the plate orientations in the shaker were rotated 180° 
following every measurement.

Growth rate analysis. Data analysis was performed using MATLAB. The OD600 nm 
measurements were averaged using a running window of two data points. The log 
phase of each of these curves was determined using an algorithm based on the 
sensitivity analysis method (‘tornado diagram’, Supplementary Fig. 1), and OD data 
in this constant exponential growth region were fitted to OD =​ OD0⋅​2gt +​ ODBG 
(in some of the wells, the log-phase period was mis-determined, and were cured 
manually; all fits are indicated in Supplementary Fig. 12). From these fitted 
parameters, we obtained for each well the background ODBG and the growth rate g. 
Fitness for each drug mixture was then calculated as normalized growth rates g/g0, 
where g is the average growth rate in duplicate wells and g0 is the median growth 
rate of all untreated wells in the experiment. All calculated normalized growth rates 
are available in Supplementary Table 10. While OD is commonly used as a measure 
of microbial density, the relation between OD and cell number depends on cell 
size and morphology, which can be affected by the antibiotics. As the growth rate 
is defined as the logarithmic derivative of the OD, it is independent of this effect 
of antibiotic on cell size, as long as these effects are constant throughout the fitted 
region. Therefore, we measure the growth rate in the regime of steady exponential 
growth long after the addition of the antibiotic.

Determining drug concentrations for co-potent combinations. To achieve  
co-potent concentrations for the different drugs, we first measured growth rates  
on gradients of each of the individual drugs and identified the IC20 and IC80 for 
each of the drugs, di

20 and di
80. Then, we designed the drug gradients such  

that the individual drugs have matching effects: = ∕d k d w( ) (1)i i i
k,  

where di(k) is the dosage of drug i at dilution number k, = ∕w d di i i
80 203  is the 

dilution factor (chosen to have three dilutions between the IC20 and IC80), 
= ×d d w(1)i i

80 3 is the highest concentration (strong enough to inhibit growth) 
and k varies from 1 to 15 such that the last concentration = × −d d w(15)i i

80 11 
is low enough to have negligible effect (all drug concentrations are provided 
in Supplementary Tables 3–8). For example: 7.3 ng ml−1 and 53.1 ng ml−1 of 
TET inhibit the growth of S. aureus by 20% and 80%, respectively; hence, 
wTET =​ (53/7.3)1/3 =​ 1.93. At the same time, 35 ng ml−1 and 152 ng ml−1 ERY 

inhibit the growth by 20% and 80%, respectively; hence, wERY =​ (152/35)1/3 =​ 1.64. 
On the co-potent line, we mix ERY and TET (Supplementary Fig. 3b) with 
the following concentrations: ⋅ = × . = −d w 53 1 93 386 ng mlTET

80
TET
3 3 1 TET with 

⋅ = × . = −d w 152 1 64 664 ng mlERY
80

ERY
3 3 1 Ery (‘O’ in Supplementary Table 5), 

199 ng ml−1 TET with 405 ng ml−1 ERY (‘N’), …​, 0.52 ng ml−1 TET with 2.93 ng ml−1 
ERY (‘E’).

Calculating model predictions for Bliss, Loewe and Fisher. The models predict 
fitness across drug concentration space f(d1,d2,...,dN) based on the single-drug 
dose response curves (fi(di), Hill fitted, Supplementary Fig. 12). For any given 
level of inhibition E, we define in each of the models the N −​ 1-dimensional 
isobolic surface of all points (d1,d2,...,dN) in concentration space predicted to have 
fitness f =​ 1–E. For Bliss, this isobolic surface is the collection of points satisfying 
∑ − = −f d E(1 ( )) 1i i i . For Loewe, the isobolic surface is predicted to be linear, 
satisfying ∑ ∕ =d d( ) 1i i i

E , where di
E is the concentration of drug i that inhibits 

growth by E, as defined by = −f d E( ) 1i i
E . For Fisher, this isobolic surface is an 

N - 1-dimensional sphere defined by ∑ ∕ =d d( ) 1i i i
E 2

. Substituting E =​ 50%, these 
calculations define the IC50 isoboles (Fig. 2b,c). The intersections of the co-potent 
lines with the predicted isobolic surfaces for ranges of values of E define the 
predicted fitness along the co-potent line (Figs. 2 and 3, Supplementary Fig. 3 and 
Supplementary Table 11). In particular, the intersections of the co-potent lines with 
the E =​ 50% isobolic surfaces define the predicted potencies D lissB

50 , D oeweL
50  and D isherF

50  
(Figs. 2–4, Supplementary Fig. 3 and Supplementary Table 11).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. MATLAB codes to calculate growth rate and model predictions 
are available on the laboratory website at https://kishony.net.technion.ac.il/
resources/; any additional codes are available from the corresponding author.

Data availability
The data sets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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